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Abstract
Depending on the degree of disability, simple tasks of daily living can be challenging for people with physical disabilities, 
such as picking up and placing objects, eating, or reaching for a cup to drink independently. Pervasive technologies such as 
robotic arms can be used to assist with these daily tasks, allowing patients to regain independence while reducing the need 
for care. Specialized devices, such as assistive forks or spoons, can facilitate these tasks. Image datasets of everyday objects 
such as MS COCO do not contain assistive devices, which tend to look different from their non-assistive counterparts. We 
present the dataset WLRI-AD (Work-Life Robotics Institute–Assistive Devices) to enable a robot to interact with devices 
in assisted living homes. The benefits of including assistive devices are demonstrated by comparing versions of the dataset 
with each other and to a baseline. Initial results show an improvement in the detection of assistive devices by training a 
YOLOv8 model on the assistive devices.
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1  Introduction

Enabling people with physical disabilities to perform daily 
activities independently can improve their quality of life [5, 
8]. Assistive robotic arms can help achieve this goal. Cur-
rently, a variety of control modalities such as joystick, chin, 
tongue, eye tracking control, and brain computer interfaces 
(BCIs) are available [1, 11, 19]. However, direct manipula-
tion of a robot can be time-consuming and difficult to learn. 
Therefore, shared control designs and algorithms are being 
developed in which the robot autonomously realizes a cer-
tain part of the control to reduce the complexity for the user 
[3, 18]. For example, the robot is able to predict the user’s 
attention, plan and execute trajectories, and grasp objects 
autonomously. As input, the robot needs information about 
the task and the environment. Nowadays, cameras and the 

robot’s internal sensor system are used as input [4, 23]. 
Information from the camera and depth sensors is used to 
calculate the object position, and point cloud information 
forms the basis for most grasp planning algorithms. There-
fore, methods for locating the desired object within the cam-
era scene must be integrated. One approach is object detec-
tion using the algorithm You Only Look Once (YOLO) [17].

The need for a model capable of recognizing assistive 
devices was identified in the context of an academic project 
aimed at developing a multimodal user interface that can be 
used by people with motor disabilities to control a robotic 
arm in everyday tasks [16]. The tasks included picking and 
placing objects, pouring water from a bottle into a cup, and 
serving a drink to individuals with physical disabilities. In 
the long term, further tasks to implement include serving 
food and performing personal hygiene, due to their impor-
tance to the community [2, 20, 22]. The intended setup 
involves attaching the robot to an electric wheelchair to 
assist in a variety of daily tasks.

The approach is based on a shared control where the 
user selects the object and the corresponding task by using 
a touch screen [16]. Object detection is performed using 
YOLOv8 [17]. One of the limitations faced in this pro-
ject was the difficulty of existing models, such as YOLO 
pre-trained on the Microsoft Common Objects in Context 
dataset (continuously named MS COCO) [9], to accurately 
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detect the most commonly used objects in assistive envi-
ronments, such as cups, forks, spoons, and bottles. A 
review of the available literature revealed that no open 
source assistive device dataset containing these classes is 
currently available. Datasets such as MS COCO already 
do contain classes such as fork, spoon, and cup. Models 
trained on such datasets are often robust in detecting non-
assistive objects. However, assistive objects differ visually 
from non-assistive objects, resulting in inaccurate detec-
tion, as shown in Fig. 1.

We argue that non-assistive devices could be used by 
the robot, but this would exclude some patients who are 
not completely paralyzed from cooperating with the robot, 
for example, when the robot should hand over an object to 
the user. In addition, it would be more practical to use the 
system directly in the assisted living environments without 
having to modify the existing devices. Detecting assistive 
devices could improve robot grasp planning, since the design 
is made to facilitate the patient’s grasping ability by provid-
ing gripping points with thicker, coated handles to reduce 
slippage.

The aim of this paper is to show that the detection of 
assistive devices is improved by implementing the WLRI-
AD dataset in the training process. Two datasets have been 
created and will be compared. One of the datasets contains 
only images of assistive devices (hereafter referred to as 
WLRI-AD-A, available at [14]). The second dataset is a 
combination of assistive and non-assistive devices (hereafter 
referred to as WLRI-AD-B, available at [15]).

The main contribution of this work includes the crea-
tion of an open-source dataset containing 762 images of 
assistive devices. We use the approach to supplement the 
assistive dataset with images of non-assistive devices, apply-
ing data augmentation techniques and using background 

colors, textures, and varying image angles to improve model 
performance.

2 � Methods

2.1 � Data collection

The images included in WLRI-AD-A were taken by the 
authors at assistive device vendors on multiple occasions 
after receiving permission from each store. The photographs 
used single objects as well as more cluttered environments 
and different fabric patterns and colors to vary the surface 
underneath the objects (see Fig. 3 for example images). The 
objects were randomly arranged on the surface. The surfaces 
were either table tops in white and wood, cloths with floral 
print, and monochrome colors. Images were taken from ran-
domized freehand positions in the room. Photographers were 
advised to minimize the time between changing positions 
and taking pictures to avoid finding scenic views, which 
would strongly bias the randomness of the dataset. They 
were also advised to take pictures from higher and lower 
viewpoints, moving around the scene to capture images 
with occluded objects and varying illumination. Illumina-
tion was further varied by taking pictures in different spots 
at the locations and at different times of day. The number of 
objects in each image varied from one to 13 (occurrences 
(images in dataset): 0 occ. (11 images), 1 (430), 2–4 (77), 
5–7 (147), 8–10 (96), and 11–13 (1)). The objects were 
moved and rotated randomly between shots to randomize 
their appearance in the scene.

A need for generalization was discovered when the per-
formance of the model trained on WLRI-AD-A (hereaf-
ter referred to as Model A) was found to be insufficiently 

Fig. 1   Assistive devices as 
available from manufacturers. 
The difference to regular cutlery 
is their curved and padded 
handle facilitating gripping the 
object. Cups might have fun-
nels, handles, and straw applica-
tions to facilitate holding and 
drinking from it. Bigger straps 
make it easier to grasp scissors
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accurate in detecting assistive devices in images from other 
companies or countries when the devices differed greatly 
from those in WLRI-AD-A. It was decided to manually fil-
ter the MS COCO dataset for images of non-assistive cups, 
spoons, forks, and scissors that fit the purpose of the dataset 
(e.g., by removing wine glasses from the cup class) and add 
the images to WLRI-AD-A, creating WLRI-AD-B. The sub-
set was created using custom code provided in [13].

It was hypothesized that giving the model access to 
images of non-assistive devices during training increases 
its robustness to variations in assistive devices by allowing 
it to focus on universal features, such as the “prongs” of a 
fork or the “bowl” of a spoon.

A total of 567 images from the MS COCO dataset [12] 
were added to append WLRI-AD-A, creating WLRI-AD-B.

2.2 � Dataset characteristics

The model was trained on the classes cup, fork, spoon, and 
scissors. These objects were available from the two assis-
tive device vendors that the authors were able to solicit for 
the images. They are also present in the MS COCO dataset, 
allowing us to compare models and test the hypothesis that 
supplementing a purely assistive dataset with non-assistive 
devices will improve detection accuracy. Additionally, 
classes were considered to add, such as plates, detachable 
handles, and dressing aids. In the case of assistive plates, 
adding pictures from large datasets is more preferable, since 
assistive plates and common plates only vary slightly in 
appearance.

An objective of the project was to detect bottles for real-
izing a pouring task. However, since assistive bottles com-
monly have detachable handles for a better grip, setting them 
apart from regular bottles, we decided not to take additional 
images of bottles for this dataset. This decision was made 
since detachable handles might constitute a separate class. 
Including them in the bottle labels would result in inconclu-
sive classes. Therefore, the class “bottles” were added to the 
dataset by including pictures from the MS COCO dataset, 
as described above. The dataset is available on Roboflow 

[15]. The images are of the type.jpg with a resolution of 
5152 × 3864 px, 350 DPI.

2.3 � Ethical considerations

Ethical standards are ensured by excluding all images from 
WLRI-AD-A that contained faces. In the combined dataset, 
people may be visible in images from the MS COCO dataset, 
but as the dataset is open source, there are no ethical issues 
in using these images. Images in WLRI-AD-A were taken 
by the authors with full publication rights. Some images 
were provided by manufacturers and vendors who gave their 
consent. Due to photo usage rights in Germany, images with-
out consent could not be included in the dataset. This could 
lead to a bias towards other designs of assistive devices. In 
reviewing the dataset for potential misuse, the authors did 
not find any cases that would be ethically challenging.

2.4 � Annotation process

The Roboflow annotation tool [6] was used to upload, anno-
tate, and export the WLRI-AD. This allowed the authors 
to collaborate and make the dataset publicly available. 
An object detection project was created. The dataset was 
uploaded and initially annotated by two team members. 
To ensure high accuracy, completeness, and consistency, 
all annotations were reviewed and corrected as necessary 
by the first author. Approximately 20% of cases required 
annotation correction, primarily due to slight adjustments 
to the bounding boxes to more precisely enclose the object. 
The annotated classes were named “cup,” “spoon,” “fork,” 
and “scissors.” The distribution of annotations is shown in 
Table 1. Objects that were partially occluded or visible only 
in reflections or through transparent objects were annotated 
without restrictions.

2.5 � Algorithm selection

The datasets were used to train an object detection algorithm 
to compare the reliability of the WLRI-AD. For object detec-
tion, we decided to use YOLO [17] because of its real-time 

Table 1   Class annotation 
distribution

Class Number of annotations 
WLRI-AD-A

Annotations included from 
COCO

Resulting number of 
annotations WLRI-
AD-B

Cup 521 262 783
Spoon 367 156 523
Fork 327 208 535
Scissors 229 182 411
Total 1444 808 2252
WLRI-AD-B 920 1840 2760
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capabilities, specifically YOLOv8, which is pre-trained on 
the 81 classes of the MS COCO [12] dataset, one of the larg-
est object detection datasets.

2.6 � Training process

Augmentation was performed on both datasets, WLRI-AD-
A and WLRI-AD-B. Table 1 shows the number of objects 
included for each class. On this data, enhancement tech-
niques were applied to the training dataset to address color 
variation and illumination issues, such as cups of different 
colors not being detected or being detected with lower con-
fidence in bright environments:

•	 Grayscale applied to 15% of the images
•	 Brightness adjustment in the range of –25% and +25% 
•	 Blur up to 2.5 pixels
•	 Noise up to 2% of pixels

The images were resized to 640 × 640 px to reduce the 
preprocessing time during training. Both datasets were split 
into 70% training, 20% validation, and 10% test subsets as 
recommended and set as default by Roboflow [24]. Random 
split provided by Roboflow was applied for each version. 
This ensured an even representation of all classes in the 
training, validation, and test sets.

For each image in the training set of WLRI-AD-A, three 
variants were created using augmentation. This resulted in 
a total number of 1834 images. Since WLRI-AD-B is larger, 
only two variants were created using augmentation, resulting 
in a total number of images of 2249. Table 2 gives a detailed 
overview of the distribution between training, augmentation, 
test, and validation sets.

Due to the size of both datasets, the model was trained 
for 50 epochs. Patience was set to 10 epochs to ensure that 
ongoing improvements were stored. The training strategy 
for Model A was to fine-tune the YOLOv8 model to special-
ize it on the assistive devices. Model B was retrained with 
additional COCO images to generalize the ability to detect 
the classes and to see how the model performed on assis-
tive and non-assistive objects. For both models, the archi-
tecture parameters were held identically. Numbers of layers 
(355 layers, including Conv, C2f blocks, and SPPF layers) 
and optimizers were set to auto (AdamW (auto-selected by 
Ultralytics), learning rate ~ 0.00125, momentum 0.9). Batch 

size was set to 16. The loss weights were set to box = 7.5, 
cls = 0.5, and dfl = 1.5.

A cross comparison was performed, where the test data-
sets from A and B were tested on the models trained with 
datasets WLRI-AD-A and WLRI-AD-B to test if this strat-
egy was applicable to real-world scenarios. This resulted in 
four comparisons: WLRI-AD-A tested on Training Set A, 
WLRI-AD-A tested on Training Set B, WLRI-AD-B tested 
on Training Set A, and WLRI-AD-B tested on Training Set 
B.

As a performance parameter, the mean average preci-
sion (mAP50 and mAP50-90) was chosen. It measures the 
average precision of the model over several IoU thresholds. 
Precision and recall were used to understand the trade-off 
between false positives and false negatives. Finally, infer-
ence time was evaluated to measure the time it takes the 
model to perform predictions. This can be critical in assis-
tive technology applications where real-time detection may 
be required.

3 � Results

Initial tests with the YOLO model, pretrained on the MS 
COCO dataset, showed that the assistive devices were 
detected with low confidence or in some cases even with an 
incorrect class prediction, as shown in Fig. 3 and Table 3. 
According to [12], a natural class imbalance due to object 
frequency in real-world imagery exists and impacts model 
priors. In the baseline test, the classes of “person,” “bicycle,” 
“car,” and “motorcycle” were detected in the dataset images. 
However, the classes of “cup,” “fork,” “spoon,” and “scis-
sors” were never detected, even though they existed in MS 
COCO. Therefore, the model was retrained with the assistive 
device dataset.

Tables 4, 5, 6, and 7 show the results of the trained and 
tested datasets. In general, Model A and Model B show suf-
ficient performance to be used as models to detect assis-
tive devices in the presented classes. However, a cross 

Table 2   Distribution of pictures 
included in each dataset

Dataset Training set Augmentation 
train set

test set Validation set Total Total w/
augmenta-
tion

WLRI-AD-A 536 1608 75 151 762 1834
WLRI-AD-B 920 1840 270 139 1329 2249

Table 3   Baseline pretrained YOLOv8 evaluated on WLRI-AD-A

Class Precision Recall mAP50 mAP50-95 Inference (ms)

All 0.0119 0.0695 0.00734 0.00592 5.1
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comparison was performed to determine their generaliz-
ability when presented with new data.

When WLRI-AD-A is evaluated on test data A (Table 4) 
and WLRI-AD-B is evaluated on test data B (Table 6), they 
give comparable results, except for a drop in recall, mAP50, 
and mAP50-95 for WLRI-AD-B. This could be caused by 
the included images from MS COCO, which include a wider 
range of backgrounds and object designs, which when not 
presented are not detectable for the model. This causality is 
confirmed by the results of the cross-validation of WLRI-
AD-A on test data B and WLRI-AD-B on test data A. While 
the evaluation of WLRI-AD-B on WLRI-AD-A (Table 7) 
shows a strong increase in performance parameters, vice 

versa, WLRI-AD-A struggles to predict the objects strongly 
(Table 5).

Significant differences between classes were tested using 
Levene’s test and independent samples t-test with SPSS. No 
significant differences between classes were found (p > 0.5, 
tmin(df = 6) = −0.307, tmax(df = 6) = 1.360). This indicates 
similar performance for all classes. A detailed overview of 
the comparison can be found in Appendix Table 8. The con-
fusion matrices in Fig. 2 illustrate the performance visu-
alization. The trained model with WLRI-AD-A performs 
worse on the WLRI-AD-B test data (best score of 0.75), 
while the reverse is true for the WLRI-AD-B model (best 
score of 1.00). This indicates that adding pictures enhances 
the robustness of the predictions. As shown in the confusion 
matrix visualizing the performance of model B on test data, 
model B performs better overall, though not perfectly. In 
particular, the classes of fork and spoon tend to be misclas-
sified. This is still a great improvement compared to the 
baseline performance shown in Table 3.

Figure 4 shows examples of the detection of the assis-
tive devices. Compared to Fig. 3, the confidence level was 
strongly increased up to 0.98, which leads to a reliable 
detection for the presented assistive devices. In the lower 
left corner, there is an example that general cutlery and 
cups can still be detected with high confidence (confidence 
range = 0.82 to 0.95).

4 � Discussion

4.1 � Application in robotics

WLRI-AD classes represent assistive devices needed in 
everyday tasks. It was created for the purpose of allowing 
robots to grasp objects that are very different from common 
designs, as seen in Fig. 1. The goal in using this dataset was 
to establish a robust method for human-robot interaction, as 
presented in previous work [16]. This approach uses object 
detection to generate interactable objects in the robot’s cam-
era scene, allowing for robust task selection. Based on the 
received object data, the framework calculates the optimal 
grasp using its internal gripper model.

In this context, we discussed different approaches that 
might facilitate interacting with everyday objects. One 
approach is adapting the robot’s end-effector to implement 
various cutlery attachments, which would eliminate the need 
for grasping forks and spoons. Another approach is adding 
form-fit or soft grippers to facilitate grasping as shown in 
[9, 10].

These alternatives have limitations when translated into 
everyday applications. Cutlery end-effectors attached to 
feeding robots have limited mobility due to their size, and 
their appearance may cause prejudice in public places 

Table 4   Trained on WLRI-AD-A, evaluated on WLRI-AD-A

Class Precision Recall mAP50 mAP50-95 Inference (ms)

All 0.975 0.925 0.979 0.920 19.58
Cup 0.989 0.924 0.969 0.911 19.16
Fork 0.958 0.902 0.970 0.865 16.78
Scissors 0.964 0.957 0.989 0.920 16.63
Spoon 0.991 0.916 0.987 0.913 17.22

Table 5   Trained on WLRI-AD-A, evaluated on WLRI-AD-B

Class Precision Recall mAP50 mAP50-95 Inference (ms)

All 0.959 0.657 0.724 0.676 22.67
Cup 0.926 0.659 0.735 0.687 21.99
Fork 0.991 0.674 0.741 0.687 22.88
Scissors 0.965 0.575 0.648 0.606 20.39
Spoon 0.955 0.718 0.774 0.723 21.10

Table 6   Trained on WLRI-AD-B, evaluated on WLRI-AD-B

Class Precision Recall mAP50 mAP50-95 Inference (ms)

All 0.909 0.785 0.865 0.758 19.01
Cup 0.912 0.836 0.894 0.820 18.20
Fork 0.898 0.775 0.865 0.744 19.38
Scissors 0.916 0.816 0.861 0.723 20.52
Spoon 0.911 0.713 0.841 0.745 17.18

Table 7   Trained on WLRI-AD-B, evaluated on WLRI-AD-A

Class Precision Recall mAP50 mAP50-95 Inference (ms)

All 0.995 0.987 0.995 0.945 20.22
Cup 0.987 0.993 0.994 0.960 19.88
Fork 1.000 0.969 0.995 0.921 16.48
Scissors 1.000 0.995 0.995 0.962 16.36
Spoon 0.991 0.992 0.995 0.937 16.60
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such as restaurants. Switching systems that change grip-
pers require space to store the end-effectors or another 
person to help switch them periodically. This can result in 
time-consuming changes and, depending on the location 
of a tool station, hygiene risks. Finally, gripper customiza-
tion is quite complex. Soft materials must be selected to 
match the shape to the wide variety of objects available. 
For example, with a standard two-finger gripper, assistive 
forks and spoons with padded handles are easier to grip 
because they do not lie flat on the surface. They need to be 
rearranged to facilitate grasping, as done in [21]. In this 
context, this dataset allows robots to interact with a wider 
variety of objects tailored to the needs of the community 

and offering advantages over common objects as shown 
in Fig. 4.

4.2 � Limitations and opportunities

The dataset is limited by the small number of available 
classes. The reasons for this are the novelty of the approach 
of training a robot to perform a wide range of daily tasks. 
The research was initially focused on a reduced set of avail-
able tasks. Since eating independently is one of the most 
important tasks for people with physical disabilities, we 

Fig. 2   Confusion matrices of model comparison
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focused on object classes used for drinking, pouring, and 
eating.

This work focused on using objects designed for easier 
grasping, which resulted in a limited range of assistive 
objects with varying designs. A variety of games with 
inclusive design are available, but were beyond the scope 
of this study. Bowls vary slightly to common designs, most 
often indicated by a raised rim or a recess to make it easier 
to pick up food. Since these are only slight variations on 
common designs, there is a high probability that they will 
be recognized by the model trained on the MS COCO data-
set alone, e.g., as the class “bowl” [7]. Additionally, bottles 
and other commonly designed objects can be equipped with 
detachable handles for easier grasping. While adding a class 
called “handles” could benefit distinguish different assis-
tive devices, it could also lead to a worse performance in 
object detection since the resulting bounding boxes (bottle 
handle) would overlap. An online search was conducted to 
assess whether the variety of objects was sufficient in terms 
of design differences. Assistive cutlery differs from non-
assistive cutlery, due to foam pads, larger handles, or stripes 
to achieve easier handling. In some cases, an inclined angle 
between the handle and the tip of the cutlery reduces the 

need for wrist movements. The objects in the dataset have 
these features and vary only in color, which is covered by 
the image augmentation.

Having each object appear in the images a maximum of 
once could lead to issues in future training. We attempted to 
mitigate this issue by incorporating images from MS COCO 
that depict multiple instances of the same object class within 
a single image. Resampling was not applied to the data 
split to minimize bias due to the sufficient performance in 
cross comparison, as shown in Fig. 3. We recommend that 
researchers using this dataset apply resampling as needed.

Because of this dataset’s classic approach, the labeled 
data can be used for zero-shot and few-shot object detection. 
In this work, we used YOLOv8n because it is well-estab-
lished and performs well in the described user interface.

In conclusion, the WLRI-AD performs well with the 
selected assistive device classes. The question is whether 
the dataset is applicable to assistive devices in other coun-
tries. For example, the “chopstick” class would benefit, 
as assistive chopsticks do exist, but due to availability, 
there were not enough varying designs to ensure suffi-
cient detection. Due to data regulations in Germany and 
limited consent from manufacturers to use their images 

Fig. 3   YOLO pretrained on MS 
COCO, predictions on the test 
set of WLRI-AD
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from websites, no other images from online stores could 
be added to the dataset.

Other areas of research, such as generative AI, can ben-
efit from this dataset by gaining new insights into cutlery 
design choices. Future work includes testing whether the 
recognition works with more complex designs, such as 
belts added to the handle of a shape, or animal designs 
such as those found in toddler forks.

5 � Conclusion

Adding contextually relevant but non-target objects can 
improve object detection in specialized domains, which 
could influence future dataset design and model training 
practices in assistive technologies. In this paper, we pre-
sent an assistive device dataset. To our knowledge, this 
is the first open-source dataset that focuses on assistive 
devices. By cross-comparing the two datasets, it was 

Fig. 4   YOLO pretrained on WLRI-AD-B, predictions on the validation set of WLRI-AD-B
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shown that adding additional images from MS COCO 
greatly improves the performance and confidence of the 
model. It allows the detection of assistive devices such 

as cups, forks, spoons, and scissors. In ongoing work, it 
is able to recognize objects for robotic grasping to assist 
people who rely on a robotic arm to perform daily tasks.

Appendix

In Table 8, all parameters are given to compare classes.

Table 8   Statistical evaluation 
of classes in cross comparison 
with groups

Comparison Dependent variable Levene’s F Levene’s sig t(df = 6) Two-sided p Mean diff

Cup-fork Recall 0.000 1.000 0.236 0.822 0.023
mAP50 0.022 0.886 0.064 0.951 0.005
mAP50-90 0.005 0.948 0.500 0.635 0.040
Inference 1.707 0.239 0.549 0.603 0.927
Precision 0.003 0.955  − 0.269 0.797  − 0.008

Cup-scissors Recall 0.303 0.602 0.145 0.890 0.0172
mAP50 0.418 0.542 0.248 0.813 0.024750
mAP50-90 10.508 0.265 0.405 0.699 0.041750
Inference 30.1920 0.124 0.952 0.378 10.3325
Precision 10.043 0.347  − 0.292 0.780  − 0.007750

Cup-spoon Recall 0.108 0.753 0.181 0.863 0.018250
mAP50 0.054 0.825  − 0.016 0.988  − 0.001250
mAP50-90 0.023 0.884 0.184 0.860 0.015000
Inference 0.332 0.586 10.360 0.223 10.78250
Precision 0.340 0.581  − 0.307 0.769  − 0.008500

Fork-scissors Recall 0.391 0.555  − 0.050 0.962  − 0.005750
mAP50 0.329 0.587 0.196 0.851 0.019500
mAP50-90 0.693 0.152 0.015 0.988 0.001500
Inference 0.141 0.720 0.216 0.836 0.40500
Precision 0.442 0.531 0.017 0.987 0.000500

Fork-spoon Recall 0.221 0.655  − 0.049 0.962  − 0.004750
mAP50 0.005 0.948  − 0.082 0.938  − 0.006500
mAP50-90 0.147 0.715  − 0.327 0.755  − 0.025250
Inference 0.637 0.455 0.473 0.653 0.85500
Precision 0.096 0.767  − 0.008 0.994  − 0.000250

Scissors-spoon Recall 0.162 0.701 0.008 0.994 0.001000
mAP50 0.350 0.576  − 0.266 0.799  − 0.026000
mAP50-90 0.656 0.154  − 0.266 0.799  − 0.026750
Inference 0.684 0.440 0.292 0.780 0.45000
Precision 0.196 0.674  − 0.029 0.978  − 0.000750
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