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ABSTRACT
Data collection is a core principle in the scientific and medical envi-
ronment. To record study participants in daily life situations, wear-
ables can be used. These should be small enough to not disrupt the
lifestyle of the participants, while delivering sensor data in an accu-
rate and efficient way. This ensures a long recording time for these
battery-powered devices. Current purchasable wearable devices,
would lend themselves well for wearable studies. Simpler devices
have many drawbacks: Low sampling rate, for energy efficiency
and little support are some drawbacks. More advanced devices have
a high-frequent sampling rate of sensor data. These, however, have
a higher price and a limited support time. Our work introduces an
open-source app for cost-effective, high-frequent, and long-term
recording of sensor data. We based the development on the Ban-
gle.js 2, which is a prevalent open-source smartwatch. The code
has been optimized for efficiency, using sensor-specific properties
to store sensor data in a compressed, loss-less, and time-stamped
form to the local NAND-storage. We show in our experiments that
we have the ability to record PPG-data at 50 Hertz for at least half
a day. With other configurations, we can record multiple sensors
with a high-frequent update interval for a full day.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing systems and tools; Mobile devices.
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1 INTRODUCTION AND RELATEDWORK
Recording sensor data from humans is notoriously difficult. Dif-
ferent results might be achieved, depending on the recording unit
and its setup. A wearable recording device, with high-precision
and high-frequency, would open new possibilities. Current devices
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like the EmotiBit[2], E4[3], or Shimmer3[8] present a solution for
this problem, though at prices starting at 488$, while relying on
close-source platforms are problems that researchers face. Further-
more, it makes the results harder to reproduce once the products are
discontinued and are no longer easily available. Several use cases
for such devices could include the gathering of data for medical
purposes (e.g., recording the heart rate data of patients), individuals
that want to record certain aspects of their daily life (e.g., capturing
fitness activities), or researchers who want to investigate the influ-
ence of environmental conditions (e.g., air pressure or humidity) on
test participants. For such cases, reliable recording of the original
sensor data is of high importance.

Many solutions thus far have developed custom software solu-
tions for selected sensors and applications. The consequence, how-
ever, is that this entails a lot of redundant work, be it in form of de-
signing, adaptation or building the wearable or the firmware of the
wearable. These problems were recognized by multiple researchers,
who have in the past years developed open-source recording solu-
tions for recording sensor data from wearables. One work by Van
Dijk and colleagues [9] used the Samsung Gear Fit 2 Pro to record
their data using the open source WEARDA package for the Tizen
OS. Specifically targeting human activity recognition researchers,
they have shown this to be useful in the case of patient monitoring.
This work still relies on commercial smartwatches for which the
sensor configurations, in hardware and software, are not known.
As soon as such products are not available anymore, reproduction
is hampered. Work by Rahman et al. [7] faces similar issues with
smartwatches. The contributions of this work are threefold:

• We contribute a custom App for a cost-effective and open-
source smartwatch platform to record precise, binary, and
time-stamped sensor data in their original form

• Our software is open-source and includes an interface in
which profiles provide easy configuration

• We show through a series of experiments that we achieve
time-efficient writing, via a buffer, to the local NAND storage

2 OPEN-SOURCE PLATFORM: BANGLE.JS 2
Due to a lack of long term support for many smartwatches by their
manufacturers, our goal is to use an open source smartwatch, which
has documented the equipped sensors and their interface. This
enables a longer-term support, since it ensures that the smartwatch
design can be replicated or mapped onto other such devices. Since
our app stays online and accessible inside an app store.We therefore
focus on the Bangle.js 2: With its 64Mhz ARM Processor, 256kB of
RAM and 8MB of flash storage, it is a fairly recent and cost-effective
smartwatch platform. Access is provided to multiple sensors: GPS,
a photoplethysmography (PPG) sensor, a 3D accelerometer, a 3D
magnetometer, a barometric pressure sensor, and a temperature
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sensor [11]. To make it easy for novice users to install new apps,
an AppLoader website was developed on GitHub [4] to facilitate
the installation of new applications.

Already available Apps for this platform do exist to record a
number of sensors, though no current (available) app can fulfil
all of the previously mentioned requirements of recording data
at a high frequency, directly from the sensors, while including
timestamps, for a long time. Existing Apps tend to have at least one
drawback: The "Health"[10] and "Recorder"[13] apps record sensor
data in a granular (i.e., lower than 1 Hz) way only, the "Acceleration
Recorder"[15] only has a few seconds runtime as it records its
data into the limited RAM, and the "HRM Accelerometer event
recorder"[1] has a limited runtime and can only capture the PPG
heart rate data and accelerometer data, while displaying details of
little interest to the wearer on the display.

Our work thus presents an open-source App for the Bangle.js
2 platform, to improve and optimize recording of the sensor data,
so that it can be used in a variety of research applications where
data must be recorded straight from the sensor at higher sampling
frequencies, with timestamps.

3 REQUIREMENTS
While the Bangle.js 2 platform and community have become a large
development ecosystem, they still come with certain limitations.
These are particularly reflected in the hardware and usability, which
we need to quantify so that we can address them during the imple-
mentation phase. The 8 MB of internal NAND storage are a limiting
factor for recording, we therefore need to ensure that we use the
space on the storage to the fullest. While spending a few bytes in
headers in general is acceptable, the sensor readings themselves
should be stored as efficiently as possible.

A next requirement we aim for is the configuration of our App.
We designed two options for this: One where novice users can sim-
ply load common, pre-written configuration profiles, and one where
more expert users can specify decoder options and set parameters
(sampling rate, settings, etc.) for every sensor. After gathering the
data, it is important to download the data from the smartwatch.
For this, we integrated our App with our fork of the Bangle.js App
Loader website, which enables inspecting whether a file has been
written, as well as to download and delete that file.

Lastly, we need methods to control the recording pipeline for
each sensor. This should not only include custom sampling intervals,
but it should also extend to the ability to stop selected sensors from
recording. With this, we have the possibility to react to problems
with the smartwatch: We implemented a two-stage warning system
for when the battery level or storage space becomes critical. For
the first stage, we warn the wearer over the smartwatch display.
For the second stage, we turn off pre-defined sensors, in order to
extend the available recording time.

4 DATA STORAGE FORMAT
In order to maximize the recording time, we need to minimize the
amount of data that we save. The Bangle.js 2 operates through a
JavaScript (JS) interpreter, which allows for a fast development
of new applications The use of 64-bit floats for all variables in JS
for the purpose of efficient recording is wasteful. By analyzing the

Sensor Variable Datatype Length
HRM vcPPG UInt 12 Bits

Barometer Temperature Float 64 Bits
Pressure Float 64 Bits

(Optional) Height Float 64 Bits
Accelerometer X Short 16 Bits

Y Short 16 Bits
Z Short 16 Bits

Accelerometer Magnitude UShort 16 Bits
Compass X Int 12 Bits

Y Int 12 Bits
Z Int 12 Bits

Heading Float 64 Bits
GPS Latitude Float 64 Bits

Longitude Float 64 Bits
Altitude Float 64 Bits

Table 1: Overview of the sensors equipped in the Bangle.js 2.
For each sensor, we have listed the variables we have access
to and optimized them to appropriate datatype and length.

source code for the single sensors and doing targeted experiments,
we were able to optimize for the amount of bits needed to store
each sensor’s data. This resulted in the figures shown in Table 1.
It would be possible to reduce the length for each variable even
more through further compression per sensor signal, this however
would likely lead to a higher burden on the processing and might
hinder higher-frequency capture of data. For some sensors, such
as the temperature sensor, this might be acceptable, but in general
this was not (yet) pursued further.

Header Format. To ensure replicate output, we save the config-
uration and export format in the header for each file. This includes
the names of the experiment supervisor and subject, the list of
enabled sensors, the settings, and the start time.

Sensor Data Format. For each sensor, we save the local iden-
tifier (ID) and the time delta. With the help of the local ID, we
minimize the amount of bits that we need for the descriptor. For
the time, we calculate a time delta between the current and last
event instead of saving the entire time. Because events will sequen-
tially, we can also reduce the amount of bits that we require. Prior
research has shown that depending on the sensor type, a minimal
interval time between readings is needed, below which the accu-
racy of recognition algorithms does not increase significantly.[5][6].
Therefore, we implemented a time threshold, for which we use a
short 8-bit, or a longer 32-bit time delta. For this threshold, we
choose 256 ms. After the time stamps, the sensor values are written.

5 IMPLEMENTATION
For the implementation of our Historiographer App we use the
Bangle.js 2 framework, which uses the JavaScript language to be
able to develop embedded software quickly, by providing a multi-
tude of libraries. These include automatic execution for processing
new data from all sensors, but also managing typed buffers and
writing to the flash. The JS language is suitable for our applica-
tion’s overall structure and main setup, but it does not give us the
necessary efficiency for several of our key routines. The Espru-
ino framework does have built in support for the C language and
ARM-Assembler[12]. We used the inline C code, as an C-object, for
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Figure 1: The successive PPG delta values, in milliseconds,
when repeatedly saving 4000 bytes towards the Bangle.js 2
flash storage. Rare outliers of up to 250 ms can be seen.

implementing larger parts of our App, to optimize for processing
speed and overall readability. Apart from reading the values from
the Bangle.js 2’s sensors, a significant portion of our application is
dedicated to the encoding and storage of all data to the flash.

5.1 Writing to the NAND Flash
As a first experiment, we examine the limitations that we have in
writing PPG delta times to the flash in a time efficient way. At first,
we tried to directly save an array, with 4000 entries, to the flash.
While the time between the entries looks acceptable, the time to
save our data does not, as 1100+ms were needed for saving the data
to the flash. One reason for this time lies in the conversion from
a float to characters. In order to decrease this time, we redefined
the array as an Int8 array. This improved the save times slightly to
800+ ms. Though with both methods we run into a problem: This
increases the amount of storage needed by using 1 to 3 bytes to
save each value. This decreases the amount of data that we can
save. Inspired by Espruino forum posts, directly writing to the flash
memory in binary was implemented. With this, we decrease the
time needed to save data drastically, with less than 250 ms (as seen
in Figure 1) and we now save the data as a byte sequence directly
to the NAND flash.

Now that we have an efficient way to save the data to the flash,
we need to create a shared array between the JS-code and the C-
Object. By exchanging the address of the array, it is possible to
access the array from the C-Object. An experiment was undertaken
to investigate the most efficient size of this shared array. For this,
we created multiple runs with different sizes of arrays. Next, we
calculated the time it took for each bit to be written. This resulted
in the distribution graphs as depicted in Figure 2. From this, it is
visible that the more data we save, the more efficient the saving of
the shared array becomes, though after 768 to 1024 bytes this effect
lessens. Therefore, we suggest setting the size to 768 bytes. With
bigger sizes, we will run into the possibility to miss a data event
from a sensor.

5.2 Data encoding
With the storing of binary data via the shared array to the NAND
flash optimized, we use JS code in the Historiographer App to inter-
face with the event monitor for the sensors. After checking whether
the data is valid, regarding values and interval, we immediately cal-
culate the time delta. After some post-processing, depending on the
variable, we pass the information towards the C-Object and wait for

Figure 2: Average time per byte to save the shared array to
the flash storage. We use a size multiple of 256 bytes.

its completion. Inside the C-Object, we push the data bit by bit into
a writing byte. If the writing byte is full, we then save the writing
byte into the shared array. Then the cycle begins again. If the shared
array is full, we can’t allow that we drop the data. This would result
in the loss of a data entry or even the inability to decode further.
Temporary stopping the execution is a bad solution. Therefore, we
use an overflow array to temporary save the data. The overflow
array must be big enough to save the rest of the sensor data. In a
worst case scenario, we need to save: 1+32+8+64+64+64 = 233𝑏𝑖𝑡𝑠 .
These fit into an array of size 30. After writing all of the data to the
shared array, we need to signal back the current status of the shared
array to the JS execution. If we use the current index and compare
it to the maximum index of the shared array, we can compare them
against each other. This result can be forwarded to our original
execution point. If the shared array is full, we call the save function.
This function saves the contents of the shared array towards the
flash, resets all the flags for the shared array and copy’s the data
from the overflow array to the shared array.

5.3 UI
To configure and control the recording of the system, we need to
provide an interface. First, we implemented the main menu screen.
It consists of the start button to initiate recording, a text input for
the name for the supervisor, a text input for the name for the subject,
a text input for the unlock passphrase, the profile selector, setting
and the output settings. For the text input, we use a "textinput-
module". With this, we enable a supervisor to select a keyboard
that is most comfortable for him/her, while reducing the work that
we need to do. The profile selector enables a supervisor to quickly
set up the app for his current needs without consulting the settings
or a technician. After selecting a profile, the supervisor can enter
their name and simply start the recording. In order for the watch
to be of immediate use, we copied and modified the existing Anton
Clock App for our work. That way, we can start and interrupt the
showing of the clock face, as well as the App’s custom warnings.
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Figure 3: Sample recording over 100 minutes, showing the
continuous temperature and pressure sensor data.

Figure 4: Time deltas for Historiographer’s current version.

6 RESULTS
Having implemented the reading, encoding and saving routines for
all of the Bangle.js 2’s sensors, we evaluate the performance for
each sensor separately and monitor the battery state.

For every sensor, we were able to verify that the data was success-
fully decoded (as seen exemplary for the barometer and temperature
in Figure 3). By comparing the theoretical runtime with the actual
runtime, the actual recording spanned a longer time-window than
anticipated. Visualizing the delta times in Figure 4 illustrates why:
The time needed to save the data from the RAM buffer to the flash
storage takes more time. For saving the data onto the flash, we used
400 ms instead of the 5 to 20 ms for 768 bytes.

We assume that this increase comes from multiple sources. For
one, we created the time graph 1 by using a minimal viable example.
Second, we increased the functional complexity that needs to be
covered. But also executing the App directly from source to reduce
the ram usage [14] likely has played a role. By carefully monitoring
the RAM usage, we may be able to use the "jit" and "ram" tags to
improve the performance [14].

On the other hand, we also need to evaluate the battery con-
sumption. By comparing the different sensors with a "stock" version
which disabled recording of all sensors, we see a steeper decrease
in the battery state. On a "stock" system, we lose a percentage
in about 11 hours. While recording the accelerometer, we lose a
battery percentage every 2.7 hours. While this decrease sounds
drastic, we still have a battery runtime of about 270 hours (≈ 11.25
days). Even when we enable a higher internal poll interval of 10
ms, we reduce the potential runtime only by half a day. Therefore,
the limiting factor for most sensors is the flash storage instead of
the battery. The exception for this is the GPS sensor. There we
consume much more energy than with every other sensor. If we
record the GPS-location every second, our runtime was limited to

Figure 5: Examples of battery usage, illustrating the influence
of different poll intervals (top), and the influence of recording
the accelerometer (bottom).

about 7 hours. Therefore, we implemented an automatic shutdown
and restart mechanism to conserve the battery.

7 CONCLUSIONS AND FUTUREWORK
This paper presents Historiographer, an open-source Bangle.js 2
App to enable efficient and flexible data recording. The App can be
accessed in our GitHub repository and tried in our forked Version
of the Apploader website.

Depending on the sensors to record, we can achieve between
half to a full day of recording time. For a simple PPG recording
with an interval of 10 ms, we can achieve a total recording time of
7.8 hours. To record the physical activity based on environmental
influences, using air pressure, magnetometer and the accelerometer
sensors, a recording time of 24 hours can be achieved. For this we
used the following settings: barometer with 84 skips (= 10.08𝑠𝑒𝑐)
without height recording, magnetometer with 10 skips (= 200𝑚𝑠),
and from the accelerometer we save the magnitude with 1 skip
(= 160𝑚𝑠), using a 10 ms poll interval.

Compared to other devices, the Bangle.js 2 has a clear advantage
in costs. With our open-source logging App, this solution could
prove to be attractive forwearable researchers and those performing
human studies alike. The large and open-source nature of the chosen
hardware ecosystem ensures also that our solution will be able to
be reproducible for years to come.

On the Bangle platform, our Historiographer App can capture
more sensor data from more sensors in a more detailed way, which
complement other Apps such as the "Health" app[10], to record for
multiple months at a lower time resolution. Future and ongoing
work will be expanding and improving the App to be able to better
compress sensor-specific data and expanding it to other platforms
that are compatible in the Espruino ecosystem.
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