
Improved Strategies for Multi-modal 
Atmospheric Sensing to Augment 

Wearable IMU-Based Hand Washing 
Detection 

Robin Burchard(B) , Hurriat Ali , and Kristof V an Laerhoven

University of Siegen, 57076 Siegen, Germany

robin.burchard@uni-siegen.de 

Abstract. Previous work in the area of hand washing detection has 
hinted at the usefulness of atmospheric sensors for hand washing detec-
tion. Specifically, a humidity sensor can be used to measure nearby tap 
water flow using wearable devices. For this work, we expand on previous 
findings and a pre-existing dataset by recording 10 additional partici-
pants with a self-made open-source prototype recording device. We intro-
duce an updated dataset with 20 participants instead of 10 participants, 
for which we make available IMU, humidity, temperature, and pressure 
measurements. The newly recorded participants conducted more com-
plex background activities, which increased our dataset’s real-world rel-
evance. Additionally, we show how to train an optimized deep-learning-
based classifier on di!erent parts of the combined dataset, improving on 
the previous study’s results, a chieving significantly better F1 scores (82%
instead of 70%) on the pre-existing dataset. Furthermore, by leveraging
a BIO-BANK semi-supervised pretrained model, we show that, unlike
in previous work, the addition of humidity sensors to IMU data has a
positive impact on the classification performance on the old and the new
dataset, improving the F1-score on the combined dataset from 60% to
68%. All code and data are publicly available on GitHub.

Keywords: Multi-Modal · Hand Washing Detection · Atmospheric 
Sensing · Human Activity Recognition · Humidit y Sensor · Data
Recording · Open Source

1 Introduction 

The detection of hand washing is related to multiple applications in our every-
day lives. A system that can automatically detect and analyze hand washing 
frequency, duration, and performance would be useful and could act as a per-
sonal hygiene assistant. Additionally, a similar system could be employed in
professional environments, especially in the food industry and in the medical
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Ö. Durmaz Incel et al. (Eds.): iWOAR 2025, LNCS 16292, pp. 308–323, 2026. 
https://doi.org/10.1007/978-3-032-13312-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-13312-0_18&domain=pdf
http://orcid.org/0000-0002-4130-5287
http://orcid.org/0009-0007-8546-0696
http://orcid.org/0000-0001-5296-5347
https://doi.org/10.1007/978-3-032-13312-0_18


Improved Multi-modal Hand Washing Detection 309

domain. Properly washing one’s hands has been shown to dramatically reduce 
the spread of pathogens in the population [7]. Therefore, a system that detects 
hand washing over the day could help its user to maintain a high lev el of hand
hygiene, protecting the user and their surroundings.

Hand washing detection can also be employed in the context of obsessive-
compulsive disorder, where ove rly frequent hand washing has a negative impact
[5,21,22]. There, a system could help by logging hand washing occurrences over 
the day, by helping the user understand how often and how long they wash their
hands or by providing valuable insights to treatment experts.

Both RGB-camera-based and wearable sensor-based methods exist to detect 
hand washing. However, the use of cameras comes paired with privacy concerns, 
and I MU sensor-based detection suffers from the ambiguity of rapid movement
patterns [5]. Some devices, like the Apple Watch [12] have built-in proprietary 
hand washing detectors, but there exists no data on their reliability. While tradi-
tional sensor-based human activity recognition systems often rely on IMU data 
only, this work focuses on making use of the contextual information, which can 
be provided by additional modalities. One example would be Bluetooth beacons
placed in a users home, which provide a clue about the location, but come with
the downside of being constrained to environments where beacons can be placed
[19]. We therefore opt for a modality that we can easily measure on-device, every-
where, with affordable, highly accurate sensors: Humidity. Our previous, prelim-
inary study, for which we investigated multiple environmental sensors (humidity, 
pressure, temperature), had shown promising results, as we could find a clear
pattern in the humidity signal when a participant was washing their hands [6]. 
Thus, for this work, we recorded 10 additional participants while they were con-
ducting different everyday activities and while they were washing their hands. 
Whereas our previous study was solely a feasibility study, in which the addi-
tional modalities could not be shown to improve the classification pe rformance,
we were able to outperform the previous study’s preliminary results substan-
tially by including additional participants, more diverse background activities,
and applying a more sophisticated deep learning pipeline.

1.1 Goals and Contributions 

The goal of this work was to improve on the previous study’s preliminary results 
and further ev aluate the usefulness of the addition of a humidity sensor.

Our contributions a re threefold:

1. Recording, labeling, comparing, and making available data from 10 more 
participan ts with more diverse background activities.

2. In-depth evaluation of the usefulness of the humidity sensor in hand wash-
ing detection, on previously available and newly recorded data, significantly
improving on the previous study’s results

3. Employing and evaluating more complex network architectures, including the 
application of a pre-trained model, to achieve significantly improved classifi-
cation results.
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2 Related Work 

While some works on hand washing detection only using IMUs exist, they are 
mostly in-lab studies or constrain the user to hand washing patterns recom-
mended by the WHO, which does not cohere well with real-world hand washing
without artificial constraints [19,23]. For other studies that also focus on unstruc-
tured hand washing recognition and achieve high classification accuracies [13], 
other limitations apply, such as small sample sizes or the absence of leave-one-out 
validation patterns. Thus, we will focus on multi-modal approaches for uncon-
strained hand washing detection in this work.

2.1 Sensors for Multi-modal Activity Recognition 

While human activity recognition (HAR) can be approached with a single sensor 
modality, such as the commonly used RGB(D)-cameras or IMUs, previous work 
in multi-modal HAR exists and employs a multitude of sensor modalities. Com-
bining mu ltiple sensing modalities leads to higher classification performance due
to the usually provided additional context, but introduces additional complex-
ity [10]. The most commonly fused sensors include IMU and RGB(D)-cameras, 
or other visual systems in various positions (e.g., body worn or stationary in a 
task-specific location). Additional modalities include audio, environmental sen-
sors such as temperature, humidity, barometer, or light, and physiological sen-
sors such as measuring oxygen saturation, heart rate, or electrocardiography
[9,10,16]. However, not all sensing modalities can be applied for all applications 
and in all environments. Especially, cameras and microphones are ethically diffi-
cult, as they record data of their surroundings, including, e.g., private conversa-
tions. For our research interest in general-purpose omnicontextual hand washing 
detection, cameras are hardly feasible, due to their inappropriateness in bath-
rooms and many public spaces. We thus conclude that in hand washing detection,
the needed additional context should be provided by privacy-preserving modal-
ities. E.g., microphone data, as used in a preliminary lab study by Zhuang et
al. [26], would need to be processed on-device and then discarded. A good basis 
for microphone-aided hand washing detection could be offline tap water audio
detection [4]. Unlike cameras and microphones, the atmospheric data we utilized 
for this work is anonymous by default, and therefore do es not pose a challenge
to the users’ privacy.

2.2 Humidity Sensing for Activity Recognition 

Any activity detection problem related to changes in ambient humidity could 
likely profit from humidity sensors. Oftentimes, humidity sensors are paired 
with other atmospheric sensors s uch as barometers and temperature sensors
to enhance the classification of activities of daily living [2,8,20]. In these works, 
the atmospheric sensors are applied together with other modalities such as IMU 
recordings. The atmospheric sensors aid the classification by providing additional
context to the otherwise ungrounded IMU recordings.
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Picking up on this idea, in a recent work, we proposed WearPuck, a wearable 
sensing platform that synchronously records accelerometer, gyroscope, humidity,
temperature, and barometric pressure [6]. We applied the novel fully open-source 
data collection device to the task of hand washing detection, in an experiment 
with 10 participants and a total of 40 hand washes. Although it was shown 
that especially the recorded humidity changes measurably during hand washing 
instances, the prediction performance of simple machine learning classifiers did 
not improve consistently with added humidity features. Therefore, we concluded
that additional efforts in data recording, data processing, and machine learning
were the logical next step. To the best of the authors’ knowledge, no other
work utilizing humidity sensors and IMUs for hand washing detection has been
published.

2.3 Machine Learning for Multi-modal Activity Recognition 
Fusion Strategies. In multi-modal activity recognition, one of the main prob-
lems is the question of when and how to fuse the different modalities’ signals. In 
early fusion, the input modalities are fused before passing them into the machine 
learning models. Early fusion enables the mo dels to learn the different sensors’
co-dependencies jointly. In late fusion, the modalities are processed separately
and are only fused at the decision stage [10], so that the models initially learn 
independent features for all modalities, before fusing these representations and 
classification. Münzner et al. showed t hat for the PAMAP2 dataset, late fusion
performs better than early fusion [15], but the performance difference was small, 
and the best method must likely be determined for e ach dataset and modality
combination separately.

Learning Strategies. In HAR tasks, labeled data has to be obtained with great 
effort and is therefore scarce, leading to small labeled datasets. As deep-learning 
models require extensive amounts of data to be trained, these small datasets 
are suboptimal. One solution can be sought in semi-supervisedly pre-trained 
models, which were trained on large amounts of unlabeled data and which are 
able to either pro vide good embeddings of the modality for downstream tasks or
can be fine-tuned for a specific task and dataset. Their performance is usually
significantly higher than for models trained only on the downstream dataset [25]. 
Thanks to the scientific community, many such models are freely available. One 
example of such a self-supervised pre-trained model is the HARNet model by
Yuan et al. [24], which we also employed for this publication. The HARNet model 
is based on ResNet and was trained on 700,000 p erson-days of accelerometer data
taken from the UK Biobank accelerometer dataset.

3 Dataset Expansion: Recording and Validation 

3.1 Collection of New Data 

The previously collected data from 10 participants served as a good baseline for 
the initial proof-of-concept. While the inclusion of additional modalities did not
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improve the preliminary machine learning performance, we were able to highlight 
a distinct response pattern of the humidity sensor to hand washing.

To create a better model and train more efficiently, additional data was 
required. Hence, we collected data from 10 additional participants, who had not 
partaken in the first experiment. All participants were volunteers and signed an 
informed consent form. The previous data collection included a lot of sitting and 
desk work in its recording procedure, interrupted by short walks, hand washing, 
and stair walking, as well as a few other activities. To increase the variability of
the dataset, we also enforced additional background activities during the record-
ing. By doing so, we increased the difficulty of classification, as there are more
movement patterns, and the new dataset contains more active behaviour. The
background activities include:

– going up and down the stairs (as in previous work)
– playing the guitar (new)
– playing with a b all (new)
– playing video games (new)
– washing dishes (new)
– other natural movements that involve active hand use (new)

As a result of this increased diversity, the classification task became more chal-
lenging. However, this also enhanced the ecological validity of the dataset, as the
recorded movements better reflect real-world behavior.

The data was collected using our own, open-source wearable device,
WearPuck1 . The technical aspect of the data recording and labeling procedure 
was identical to the one described in our previous publication [6]. Thus, we refer 
the interested reader to this publication for a more detailed description of the
recording, labeling, and post-processing steps.

3.2 Validation and Comparison to Existing Dataset 

The newly recorded n = 10 participants (7f, 3 m, aged between 20 and 30 years) 
performed a total of 39 hand washing instances. Thus, the newly recorded dataset 
contains roughly the same amount of data as we recorded for the same duration
with the same number of participants. However, as explained in Sect. 3.1,  the  
background activities were much more diverse. Additionally, the durations of the 
hand wa shes were different, with a mean duration of 45 s.

Figure 1 shows the response of the recorded humidity values to the hand 
washing. Both the pre-existing dataset and the newly collected data show a 
similar behaviour, with a peak of around +8%-points between 20 to 50 s after 
the beginning of a hand washing instance. As previously reported, the humidity 
starts to increase immediately when hand washing starts. After peaking, the
humidity signal starts to decline again. We expect that the hand washing mostly
ends a short time ahead of the peak, which is better visible in the subplot (a)
of Fig. 1. For the newly collected data, the trend is still visible, but slightly less
1 https://github.com/kristofvl/WearPuck. 
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pronounced, due to the higher diversity in hand washing duration, which spreads 
out the end of hand washing instances more.

Fig. 1. Response of the humidity sensors to hand washing, averaged (in dark blue) over 
all recorded hand washes of (a) the pre-existing dataset and (b) the newly collected 
dataset, with bootstrapped 95% confidence interval (in light blue). The start of the 
hand washing is marked with a green vertical line. The yellow vertical lines mark the
respective ends of all the handwashing instances. (Color figure online)

Figure 2 displays the distribution of hand washing durations across the pre-
existing, the newly recorded, and the combined datasets. The hand washing 
durations differ, with the newly collected participants washing for 45 s on aver-
age, compared to 2 5 s in the previous data collection. The new data collection 
also includes some outlier durations of up to 109 s. This comparatively long 
duration was not enforced or encouraged by the conducting experiment supervi-
sors, as participants were asked to wash their hands as they normally would, if
they felt “dirty”. After combining the datasets, we ended up with a mean hand
washing duration of 35 s (median: 30 s). The minimum hand washing duration of
6.5 s was not undercut by the newly recorded participants. The maximum hand
washing duration in the combined dataset is 109 s.

As shown in Table 1, the newly recorded dataset contains more hand wash-
ing than the pre-existing dataset, thanks to the participants washing for longer 
durations. The number of instances of hand washing is similar, but the newly
recorded participants contribute more washing data to the combined dataset.
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Fig. 2. Statistics for the duration in seconds of all existing and newly recorded hand 
washes. The box plot shows the median (orange solid line), mean (green dashed line), 
quartiles (box extents), outliers (circles), and minimum and maximum durations inside
1.5 times the inter-quartile range (whiskers). (Color figure online)

Table 1. Recorded minutes of activities and ratio of hand washing for the pre-existing 
and the newly recorded dataset. The new dataset contains 1.64 times as many minutes 
of hand washing as the pre-existing dataset. The c ombined dataset contains 47.7min
of hand washing, which makes up for around 4% of the recorded 1240min.

Dataset Recording duration (min)Hand washing duration (min)Ratio ( %)

Pre-existing 612.18 18.05 2.95 
Newly recorded 627.99 29.65 4.72 
Combined 1240.17 47.71 3.85 

The combined dataset now has a total length of 1240 min (almost 21 h), and 
contains 48 min (4%) of hand washing. Altogether, this means that the total 
hand washing duration in the combined dataset has now become 2.64 times 
as large as in the pre-existing dataset only. The dataset remains highly im bal-
anced, with 96% of it belonging to the class of background activities. However,
hand washing is still over-represented in comparison to what could be expected
in-the-wild.

Overall, the newly recorded data significantly enlarges our database and con-
tains more variety in the durations of handwashing. Meanwhile, the effect of the 
humidity rising while washing the hands is equally present in the new data as 
in the previously collected. Thus, we conclude that the measured effect seems to
generalize well to diverse other environments and participants.



Improved Multi-modal Hand Washing Detection 315

4 Methods 

For this publication, we revisited the previously recorded dataset and applied a 
better deep learning model to the hand washing classification with and without 
the added humidity modality. Afterward, we combined the data of the newly 
collected 10 additional participants with the existing dataset and developed an
additional optimal model for this combined dataset. All code and data are pub-
licly available in our GitHub repository2 . 

4.1 CNN-GRU Model and Training Procedure 

Due to the usually high performance of previous combinations of CNNs with 
recurrent network parts like DeepConvLSTM [3,18], we opted for a CNN model 
with a gated recurrent unit (GRU). The model with the GRU slightly outper-
formed DeepConvLSTM in preliminary testing. The full network consisted of 
two one-dimensional convolutional layers, followed by max-pooling, the GRU, 
a 4-headed attention mechanism, layer norm, global average pooling, and two 
dense lay ers with dropout (p=0.5) as the classification head. We trained it on
the IMU data (accelerometer, gyroscope) with and without the added modality
of humidity, on sliding windows (5 s, 50% overlap).

To make use of the humidity data, we extracted six types of features from 
the sliding windows of sensor readings that capture both the statistical structure 
and temporal dynamics of the signal. The mean and standard deviation quantify 
the overall humidity level and local variability, to capture and identify the char-
acteristic rise and fluctuation patterns we associate with hand washing. We use 
frequency-domain features derived from the Fourier transform to encode periodic 
components introduced by repetitive patterns, which the humidity sensor might 
pick up. Higher-order statistics such as skewness and kurtosis capture asym-
metric distributions and heavy tails, as likely caused by sharp humidity spikes.
We also calculated the mean of first-order differences, i.e., the mean steepness
between two consecutive sensor values, which reflects the rate of change over
time, to detect the rapid increase and the decrease while and after washing
the hands (c.f. Fig. 1). While this worked well on the pre-existing dataset, we 
developed a more elaborate set of features f or the combined dataset, which we
describe below.

The previous dataset contained 10 controlled office-setting recordings where 
the participants performed handwashing mostly followed by returning to a seated 
position. This means that the motion patterns that were outside the hand wash-
ing segments had limited variation. The sensor modalities recorded in the previ-
ous dataset were the s ame as for our new recording, including a 3-axis accelerom-
eter and gyroscope sampled at 52Hz, as well as a humidity, temperature, and
atmospheric pressure sensor sampled at 1Hz.

While the previous publication relied on random forest classifiers (RF) and 
hand-crafted features, we used a deep neural network trained with focal loss and

2 https://github.com/AliHurriat/HandwashingDetection-WearPuck. 

https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
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SMOTETomek [1] resampling to handle class imbalance. We focused on the pre-
viously best-performing 5 s sliding window approach to segment the time-series 
data. The classification was performed using the same leav e-one-participant-out
method to ensure full comparability and the most realistic approximation of
real-world performance on unseen users.

To assess the generalizability of the model and to validate the newly recorded 
data, we also evaluated the handwashing detection on a combined dataset of the 
new and the previously collected dataset. As opposed to the previous dataset,
the newly collected dataset contains a wider range of real-world activities, so we
expected the performance to differ.

4.2 Applying Semi-supervised Embeddings and Better Modality 
Fusion 

To improve generalization across subjects and address the limitations of hand-
crafted features, as well as to tackle the problem of the still small dataset size, we 
employed a semi-supervised learning approach using a pretrained mo del to gener-
ate IMU embeddings. Specifically, we leveraged HARNet, a ResNet-based model
from the BioBank SSL repository [24]. This model was pre-trained on large-scale 
(>700.000 person days) wearable sensor data in a self-supervised manner. For 
each 5-second window of accelerometer d ata, a 1024-dimensional embedding can
be extracted from HARNet to capture rich motion representations.

In parallel, we included 11 statistical and temporal features from the humidity 
signal, including the measures mean, standard deviation, minimum, median, 
maximum, count of high values, range between 10%-, and 90%-percentile, peak 
count, mean and sd of first order derivative, and difference between last and 
first v alue of each window. We redesigned the humidity features compared to
previous work, in order to make better use of the humidity response discussed
in Sect. 3.2. 

The humidity features were concatenated with the 1024-dimensional IMU 
embeddings to form a unified input vector for classification.

The concatenation of humidity features and the IMU embeddings was then 
jointly used to train a classification head. We trained a three-layer fully con-
nected neural network (layers: 128->64->1 neuron(s)) with dropout, batch nor-
malization, and Gaussian noise layers on this feature set. We applied a focal 
loss to handle class imbalance and further used SMOTE-Tomek resampling to 
improve minority class representation. Additionally, data augmentation was per-
formed on samples belonging to the positive class using Gaussian noise injection 
and amplitude scaling. All features were standardized using z-score normaliza-
tion. The predictions were smoothed using a median filter to reduce jitter. All
evaluations in this publication followed a leave-one-participant-out (LOSO) pro-
tocol, allowing us to evaluate performance on completely unseen subjects, thus
ensuring the best approximation of real-world performance. The results for each
subject were then averaged to form the final F1 scores and accuracies.
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As shown in Sect. 3.2, the class distribution is imbalanced and therefore high 
F1 scores are difficult to achieve, while extremely high accuracy values are easier
to achieve but less meaningful.

5 Machine Learning Results 

Although we performed multiple separate experiments on different subsets of the 
available data, the main results are jointly shown in Table 2. This table shows 
the mean results, averaged over all participants.

Table 2. F1 score and accuracy score result comparison of di!erent methods (newly 
contributed methods in bold font). While previous work could not make use of the 
humidity features well, our CNN-GRU model was able to outperform the reported 
F1-score by 13% points. The accuracy was not reported for the Random Forest base-
line. On the combined dataset, including humidity values boosts the performance for
the HARNet-embedding based network (SSL Emb.). This model, based on the semi-
supervised BioBank IMU embeddings, performs best on the larger and more compli-
cated dataset (F1 = 0.68).

Dataset & Model F1 Score Accuracy 
IMU+H IMU IMU+H IMU 

Pre-ex. Dataset (Baseline, RF, [6]) 0.69 0.70 - -

Pre-ex. Dataset (CNN-GRU) 0.82 0.74 0.99 0.98 
Combined Dataset (CNN-GRU) 0.54 0.58 0.93 0.94 
Combined Dataset (SSL Emb.) 0.68 0.60 0.96 0.94 

We evaluated the CNN-GRU model’s performance with and without humid-
ity features on the pre-existing dataset using LOSO cross-validation. In the pre-
vious study, including humidity as a sensing modality did not have a positive 
impact on the classification performance (0.69 with humidity features vs. 0.70
without humidity features). However, as also shown in Table 2, when we applied 
our CNN-GRU model to the pre-existing dataset, the models that included 
humidity data achieved an average F1 score of 0.82, compared to 0.74 when 
humidity characteristics were excluded. Only a single percentage-point of accu-
racy could be gained when including humidity features (99% vs 98%). However, 
as explained above, accuracy is a less meaningful metric on highly imbalanced
data. In general, adding humidity now significantly contributed to the higher
performance of the model, in combination with the deep learning architecture
outperforming the RF classifier.

Building on the analysis of the previous dataset, we next examined the 
model’s performance on the combined dataset. As shown in Table 2, when apply-
ing the same CNN-GRU model, only relatively low F1-scores (0.54 with humidity 
features, 0.58 without humidity features) were reached, and including humidity
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values slightly worsened the performance. This led us to the conclusion, that the 
newly recorded data’s additional background activities made it harder to train 
a general model, as certain background activities (such as playing the guitar)
were only conducted by some subjects, and never in the pre-existing dataset.

Fig. 3. Combined dataset results for the embedding-based model. Left: Per participant 
F1 scores of the LOSO-evaluation, with and without added humidity (IMU+H/IMU). 
Participants  1  to  10  belong  to  the  pre-existing  dataset,  and  11  to  20  b  elong to the
newly recorded dataset (separated by the dashed gray vertical line). Right: Aggregated
F1 scores for both modality sets.

Our solution of applying the pre-trained BioBank “harnet” model, together 
with better manually engineered humidity features yielded much stronger per-
formance on the combined dataset. When including humidity, an F1 score of 
0.68 was reached (+0.14 compared to CNN-GRU), while without humidity fea-
tures, the F1 score was lower with only 0.60 (+0.02 to CNN-GRU). The accuracy
values of 96% vs 94% followed suit. Per participant results for this best model
are shown in Fig. 3. Generally, the performance for participants belonging to 
the pre-existing dataset is stronger, with a mean F1 score of 0.8 for this subset 
(IMU+H). Notably, the results with and without the added humidity sensor are 
similar for most subjects. For some distinct participants, namely 05, 10, 17, 19,
and 20, adding the humidity sensor boosts performance more significantly.

Another special participant is participant 15, for whom the system failed to 
detect hand washing reliably, with an F1 score below 0.1. We investigated this 
failure by visualizing hand w ashing procedures of participant 15 and comparing
them to other participants. One such example is displayed in Fig. 4, where we 
compare the accelerometer data and humidity values for one entire hand washing 
procedure. We found the u sual high frequency pattern (visible for participant 13
in subplot (b) of Fig. 4, 8–22 s) to be completely missing from participant 15’s 
hand washing procedures, which explains the model’s difficulties in detecting the 
washes. This finding highlights the uniqueness in hand washing patterns, which 
can differ strongly from person to person. Added to that, it shows that humidity 
changes alone are also not suitable for reliable detection, as humidity changes
can occur for different reasons and during different activities, such as “washing
dishes”, which is included in the newly recorded dataset. Excluding participant
15 from only the evaluation step or from both the training and evaluation step



Improved Multi-modal Hand Washing Detection 319

Fig. 4. Two hand washing procedures, with accelerometer and humidity values plotted. 
(a) For participant 15, (b) for participant 13. While the humidity rises for both subjects 
with a small delay, the IMU shows that, in comparison, participant 15 (a) moves
more slowly, as the distinctive high-frequency hand washing pattern exists only for
participant 13 (b).

increased the mean LOSO F1 score to 0.71 and 0.72, respectively, showing that 
this participant’s p eculiar hand washing patterns slightly confounded the model.

6 Discussion and Future Work 

From the machine learning results on all collected data, we can derive that 
humidity is a valuable modality for hand washing detection. While previous work 
failed to reliably make use of the clearly visible humidity pattern around hand 
washes, our new results show that adding humidity to the IMU data provides 
context and thus improves the performance. This statement does not hold true, 
when the complexity of the activities and the small amount of available training 
data diminish t he model’s generalization capabilities, as was the case with our
CNN-GRUmodel on the combined dataset. Humidity alone can also not solve the
problem, as the results for participant 15 highlighted, for whom the movement
patterns were too unique to be recognized well.

The variance of achieved F1 scores between different subjects is high, due 
to the highly personal hand washing styles. Especially participant 15 displayed 
a unique hand washing pattern. Although the model performed better when it 
could make use of humidity, the performance remained weak for this specific
participant. In a previous study [6], we showed that personalized re-training 
with only a small amount of data can boost the performance further, even for
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participants for which a generalized model struggles. A “user calibration step”, 
i.e., personalized retraining, therefore makes sense for the real-world deployment 
of such hand washing detection systems. This finding is fully in line with the
literature, where real-world hand washing is also described as “unstructured”
[13]. Even with the differences between subjects, the comparison of modalities 
showed that the model with humidity as an additional modality was never sig-
nificantly outperformed. However, for some participants, adding humidity sig-
nificantly improved the performance. Therefore, we conclude that its inclusion
is justified, and we urge researchers to continue to include it in future data
recordings.

As in many other domains in which labeled training data is scarce, utilizing 
a model that was pre-trained semi-supervisedly on a large unlabeled dataset 
yielded the best performance. We did not try finetuning the parameters of the 
pre-trained model, and only trained the classification head. Finetuning all lay-
ers could lead to even better performance in the future, as it has been shown
to sometimes perform better than just training a fully-connected classification
head [14,17]. With the significantly higher F1 scores achieved on both the pre-
vious dataset and the combined dataset, we came one step closer to a reliable, 
environment-independent, in-the-wild hand washing detection model, thanks to 
the inclusion of a pre-trained model in the pipeline and to adding more sophis-
ticated, yet handcrafted, humidity features.

The newly recorded data is more diverse in its activities, and thus it is harder 
to predict the included hand washing instances. However, a large portion of the 
performance that was lost when compared to the simpler pre-existing dataset 
could be made up using the semi-supervised embedding model. The dataset is 
now twice a s large, which, in theory, makes training models easier and enables
better generalization capabilities. We freely offer the combined dataset for down-
loading in our GitHub repository3 . 

The WearPuck recording device was also re-validated with this research, as 
we used it to record another 10 participants. It worked reliably and made it 
fairly easy to collect data from the participants, as all sensors are attached to
one device and no further synchronization is needed.

In the future, even more complex models can be tested for offline classifica-
tion. Our collected data can serve as a starting point for model training, likely 
of a pre-trained established model and architecture. For o nline classification,
lightweight models, which can be run directly on wearable devices, could be
trained with it.

An additional modality, which could probably be employed well to detect 
hand washing events would be sound. Microphone recordings could help, as the
sound of tap water is usually audible, and tap water datasets already exist [11], 
just not in conjunction with hand washing [4]. A combined wearable system of 
IMU, humidity sensor, and microphone could be the solution to the most reliable
system for the environment-agnostic detection of hand washing.

3 https://github.com/AliHurriat/HandwashingDetection-WearPuck. 

https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
https://github.com/AliHurriat/HandwashingDetection-WearPuck
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7 Conclusion 

In this work, we extended our previous publication on hand washing detection 
using multi-modal sensing. We deepened our understanding of the usefulness of 
the inclusion of humidity sensors by analyzing it on a per-participant level, and, 
unlike related work, we were able to show that the humidity sensor boosts per-
formance when added to IMU recordings for the hand washing detection task. To 
do so, we leveraged a model that was pre-trained on large amounts of unlabeled
IMU data. We expect that humidity sensors can be useful in handwashing-related
tasks and other water- or humidity-related HAR tasks as well, which remains
underexplored.

We analyzed the weak outlier performance of one participant due to their 
unique hand washing style and propose to u se small amounts of data for per-
sonalization in future work.

Additionally, we presented and evaluated the recordings of 10 new partici-
pants, increasing the size of the dataset to 20 participants and more than 20 h. 
The newer recordings contain significantly more unlabeled background activities, 
less idleness, and are fully compatible with the previous recordings. Our dataset
can be used to train even more sophisticated models for the task of hand washing
detection.

Possible future work includes combining even more wearable sensors into 
one multi-modal detection system, which in turn also requires additional data
collection and method development.

Disclosure of Interests. The authors have no competing interests to declare that 
are relevant to t he content of this article.
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R.: CNN-based sensor fusion techniques for multimodal human activity recogni-
tion. In: Proceedings of the 2017 A CM International Symposium onWearable Com-
puters, pp. 158–165. ACM, Maui Hawaii (2017). https://doi.org/10.1145/3123021. 
3123046 

16. Ni, J., Tang, H., Haque, S.T., Yan, Y., Ngu, A.H.H.: A Survey on Multimodal Wear-
able Sensor-based Human Action Recognition (2024). https://doi.org/10.48550/ 
arXiv.2404.15349 

17. Nshimyimana, D., Rey, V.F., Suh, S., Zhou, B., Lukowicz, P.: PIM: Physics-
Informed Multi-task Pre-training for Improving Inertial Sensor-Based Human
Activity Recognition (2025). https://doi.org/10.48550/arXiv.2503.17978 
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