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Abstract. Most pattern recognition models are developed on pre-proce-
ssed data. In computer vision, for instance, RGB images processed 
through image signal processing (ISP) pipelines designed to cater to 
human perception are the most frequent input to image analysis net-
works. However, many modern vision tasks operate without a human in 
the loop, raising the question of whether such pre-processing is optimal 
for automated analysis. Similarly, human activity recognition (HAR) on 
body-worn sensor data commonly takes normalized floating-point data 
arising from a high-bit analog-to-digital converter (ADC) as an input, 
despite such an approach being highly inefficient in terms of data trans-
mission, significantly affecting the battery life of wearable devices. In this 
work, we target low-bandwidth and energy-constrained settings where 
sensors are limited to low-bit-depth capture. We propose γ-Quant,
i.e. the task-specific learning of a non-linear quantization for pattern
recognition. We exemplify our approach on raw-image object detection
as well as HAR of wearable data, and demonstrate that raw data with
a learnable quantization using as few as 4-bits can perform on par with
the use of raw 12-bit data. All code to reproduce our experiments will
be released upon acceptance.

Keywords: Efficient Sensing · Object Detection · Human Activity
Recognition

1 Introduction 

Deep learning techniques have revolutionized the performance of numerous pat-
tern recognition tasks in the last decade by training on large-scale image datasets. 
Yet, comparably little attention has b een paid to the type and quantization
of the input data. In computer vision, for instance, most pipelines consider
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pre-processed sRGB images with a standard bit depth of 8 bits. In the imag-
ing process, cameras usually capture visual information in a higher-bit-depth 
RAW format which is converted to the standard format by an image signal 
processor (ISP) using a series of operations including black light subtraction, 
demosaicking, denoising, white balancing, gamma correction, color manipula-
tion, and tone-mapping to finally obtain a visually pleasing 8-bit sRGB image. As
photography-oriented ISP pipelines may not be optimal for vision tasks, recent
works [13,30,33,38] have also successfully optimized ISP pipelines together with 
the downstream vision task. Yet, the idea to explicitly optimize the quantization 
for a given (automated) machine learning task has not been exploited so far.

Similarly, most studies in human activity recognition (HAR) from body-
worn data simply use linearly quantized high-bit (e.g. 12-bit) information from 
the sensors. While settings o f lower bit quantizations have been investigated (see
[3,10]), the idea to learn an optimal quantization has not been studied.

In both settings, computer vision and HAR, the quantization of the analog 
data into a digital signal plays a critical role in balancing data qualit y, memory
requirements, and energy consumption at the analog-to-digital converter (ADC),
see e.g. [23]. Moreover, significant bandwidth can be saved if the recorded data 
is sent to the cloud in a low-bit format for further analysis.

In this paper, we demonstrate that a tailored learned quantization has sig-
nificant advantages over a naïve linear quantization. Specifically, we study a 
learnable non-linear quantization via

Q(X , γ, µ) = QN̂ (sign(X − µ) · |X − µ|γ) (1) 

for (normalized) analog input values X , a linear quantizer Q ̂N to a target bit-
depth of N̂ bit, and learnable parameters γ as well as an offset µ. This l earnable
non-linear quantization is optimized together with neural networks for specific
tasks. We refer to our approach (1)  as  γ-QUANT.

We demonstrate that γ-Quant improves the performance of object detection 
on raw data on diverse vision datasets like the PASCAL-RAW dataset [32]  and  
the RAOD dataset [46] by simulating γ-QUANT on analog signals by using raw 
(high bit depths) images of the respective datasets. We show generality of the 
approach by conducting a similar study for a completely different modality, i.e.,
inertial, body-worn sensor data, using different datasets commonly used in HAR.

In summary, the contributions of this work are as follows:

– We show that naïve low-bit quantization of accelerometer data as we ll as of
images harms model performance.

– We propose γ-QUANT, a learnable non-linear quantization (parameterized 
similar t o a gamma correction), as a solution.

– We demonstrate that our proposed method allows reducing the recorded data 
to up to 4-bit for object detection and even 2-bit for human activity recog-
nition without significant performance drops in comparison to high-bit data. 
Moreover, we demonstrate that learning the quantization via γ-Quant yields
systematic improvements over a classical (linear) quantization.
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2 Related Work 

Work in the direction of jointly optimizing sensor and neural network parameters 
is limited, though some substantial contributions have been made recently. We 
summarize them in our two application domains, computer vision and wearable
sensor data analysis, separately.

2.1 Quantization of Wearable Sensor Data 

Energy efficiency is crucial for wearable human activity recognition on edge 
devices with limited battery capacity. Transmission of HAR data accounts for
significant energy consumption at the wearable device [22]  which  can  be  min-
imized by reducing expensive communications, for instance, by aggregating or 
compressing data, and doing on-device feature extraction and classification to 
avoid sending raw signals. Recen t work has focused on efficient inference of neu-
ral networks for on-device HAR using pruning [24], adaptive inference [35]  and  
quantization [11,12,49]. Unlike the quantization of HAR data, network quanti-
zation has been widely studied. Exemplary approaches include sub-by te and
mixed-precision quantization with adaptive inference in 1D CNNs [11], full-
integer quantization of DeepConv LSTM [49], and binary quantization of weights 
and activations in neural networks [12]. Orthogonal to these techniques, power 
savings can also be achieved by turning off the sensors when inactive or lower-
ing their sampling rates [31,48] or adapting sampling rates per activity [9,47]. 
Further techniques have also been proposed to handle such HAR data captured 
at variable sampling rates, including modifications to neural network architec-
tures [28], and data augmentation [16]. Unlike these techniques, we address the 
often-overlooked challenge of reducing energy use during data capture by apply-
ing low-bit quantization directly at the inertial sensor, which c an provide task-
aware data compression immediately at acquisition, complementing the existing
energy-saving techniques.

2.2 Codesigning Imaging System and Vision Models 

Instead of the traditional approach where imaging hardware and perception 
models are developed independently, a recent trend in efficient machine learning
is to code-sign imaging systems and computer vision models [20], creating tightly 
integrated solutions that maximize performance while reducing the hardware or
computing requirements. [21] formulate imaging building blocks as context-free 
grammar whose parameters can be optimized through a reinforcement learning
framework. [6,7,14] jointly optimize for the downstream computer vision model 
along with the optical layer to exploit its potential computation capability. [40] 
proposes a differentiable approach to jointly optimize the size and distribution of 
pixels on the imaging sensor along with the downstream computer vision model. 
However, none of these works deal with quantization at the sensor, which is the
focus of our work.
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RAW images contain more information than standard RGB images (sRGB), 
which could potentially be be neficial for higher-level vision tasks such as object
detection [27,45,46]. In this context, a hardware-in-the-loop method is intro-
duced in [30] to optimize hardware ISP for end-to-end task-specific networks 
by using zero-order optimization. Diamond et al. [13] use Anscombe networks 
as neural ISPs which are jointly trained with task-specific neural networks. [29] 
train a minimal neural ISP pipeline for object detection that improves general-
ization to unseen camera sensors. Robidoux et al. [38] optimize HDR ISP hyper-
parameters together with detector network, whereas [33] train a neural network 
for automatic exposure selection that is trained jointly with ISP pipeline and 
a network for HDR object detection. Instead of using the whole ISP, [3,46] 
identifies the key components of the ISP for downstream vision tasks. Prior
works [26,27,46] learn specific parameterized ISP functions such as demosaick-
ing and gamma correction, color correction in an end-to-end fashion along with
the object detector. While some of these works [27,46] learn a gamma correc-
tion, this is a part of the ISP pipeline after a digital image has been obtained, 
while we propose t o learn this function before quantization at the sensor for the
analog input. While [3,10] consider the effect of low bit quantization on vision 
tasks, they do not optimize this process. Instead of learning fixed ISP parame-
ters, [44] introduces a scene-adaptive ISP to automatically generate an optimal 
ISP pipeline and the corresponding ISP parameters to maximize the detection 
performance. Yet, the learned computational steps are applied to the digital (= 
already quantized) image. To the best of our knowledge the learning of a quan-
tization to be applied within the analog-to-digital converter of a camera, has not
been considered before.

3 Our Approach γ-Quant 

3.1 Preliminaries 

Many sensors use a physical effect to induce a voltage which is converted to a dig-
ital measurement by an analog-to-digital converter (ADC). For instance, variable 
capacitance Micro-Electro-Mechanical Systems (MEMS) accelerometers that are 
present in many mobile and wearable systems, sense tiny mass’ distance changes 
between two capacitor plates. An in-chip ADC converts the resulting amplified 
voltages to quantized digital values that are handled in a local processing unit. 
Similarly, in imaging, a CMOS sensor uses photodiodes (and the photo-electric 
effect) to induce a charge, which is transferred to a capacitor. The charge is 
converted to a voltage, amplified and passed to the ADC. For both modalities
the ADC typically uses a linear quantization with at least 8, more commonly
12 or even 16 bits per value. Yet, both the energy consumption as well as the
readout speed are crucially influenced by the bit-depth, such that a reduction
can have significant benefits: According to [43], simply reducing the image bit-
depth from 16-bit to 12-bit has shown speedups by a factor of tw o in industry. It
was shown in [5] that – for energy-constrained sensors – ADCs alone contribute 
up to 50% of the energy consumption in an image sensor. Similarly, in wearable
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sensorics, transferring the recorded accelerometer data wirelessly has shown to 
be the by far most energy-consuming operation, such that a reduced bit-depth
has an immediate and significant effect on the wearable’s battery life.

3.2 A Learnable Quantization Approach 

The most straight-forward ADCs produce lower bit-depths via linear quantiza-
tion, i.e., converting each analog value X (assumed to be normalized to [0, 1])  to  
a digital value XQ via

QN̂ (X ) = X · (2N̂ − 1) , (2) 

where N̂ is the desired bit depth, and . is the floor operation.

Fig. 1. γ-Quant learns the quantization of an ADC to convert the analog signal of a 
sensor to a low bit depth digital signal, which is subsequently sent to the neural network 
for performing the downstream task. The parameters of the quantization are trained 
jointly with the parameters of the neural network in a task-specific fashion. γ-Quant
can reduce the energy consumption of the sensor significantly with a minimal loss in
performance.

In imaging, the Image Signal Processor (ISP) converts the raw digital val-
ues to standard RGB (sRGB) images through a sequence of pre-processing 
steps including demosaicking, denoising, white-balancing, color conversion, and 
tonemapping. Y et, low bit-depth raw-images often lead to poor visual quality.
As the human visual system rather scales logarithmically, [1,3]  proposed  to  scale  
the analog signals before quantization via

Xlog = log(X + ), (3) 

where is required to bound the input to the logarithm from below. [3]  use  =1 
and quantize the resulting signal via 

XQ =
Xlog − min(Xlog) 

max(Xlog) − min( Xlog)
· (2N̂ − 1) . (4) 

Yet, the quantization is ad-hoc, independent of the target bit-depth N̂ ,  and  the  
effect of heavily depends on the dynamic range of t he analog signal, such that
it might need domain- and downstream-task specific adaption.

For body-worn accelerometer data, values are typically in [−1, 1] (up to a 
scaling) as accelerations for each axis can happen in two (opposite) directions,
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reflected by different signs. Thus, a logarithmic quantization is not straightfor-
ward. Moreover, accelerometers might constantly yield a non-zero signal in the 
gravitational field of the earth such that zero might not be a natural candidate
for the finest quantization anymore.

For these reasons, we propose γ-Quant, i.e., an automated approach for 
learning the quantization of sensor signals in an automated and task-specific
way, see Fig. 1. More precisely, we propose to learn a non-linear low-bit ADC
parameterized via (1) along with a neural network for a specific task by opti-
mizing 

min 
θ,γ,µ 

E(X ,y) [L(η(Q(X , γ, µ); θ), y)] , (5) 

where η is the task-specific neural network with parameters θ, γ and µ are the 
parameters of the learnable ADC (i.e., the quantizer Q), and L is a suitable loss
function comparing the network output and the ground truth prediction y.

To optimize (5), we propose to simulate the learnable ADC Q(X ,  γ,  µ) by 
using readily available high-bit data X̂ as an approximation to the analog signal 
X . Since the quantization operation stops the flo w of gradients in the backward
pass, we use a straight-through estimator to allow gradient-based optimization
of γ and µ.

While a simulation enables the training of (5) with standard first-order meth-
ods on large data sets, the resulting learned (non-linear) ADCs can be realized 
in hardware: For body-worn sensors such as 3D accelerometer MEMS, the in-
chip Digital Signal Processor can be re-configured to adjust ADC settings such 
as the resolution or sensitivity range through internal registers. These subse-
quently alter the step size or quantization level of the digital output. Custom
transfer functions or lookup tables can be implemented in the sensor to apply
non-linear scaling. For CMOS image sensors non-linear quantization in the ADC
can also be realized as demonstrated in [4,15]. Thus, our learnable quantization 
framework targets specific application (such as smart watches for human activ-
ity recognition or object detection cameras in an autonomous driving setting)
where dedicated hardware is built/programmed using the task-specific learned
quantization.

3.3 Specifics of γ-Quant for HAR and Object Detection 

When applying γ-Quant to imaging applications, we built upon findings o f
priors works (e.g. [3]) that low intensity values are important to resolve in a 
more fine-grained manner. Therefore fix the offset µ =  0, and simplify γ-Quant 
to 

Q(X , γ) = QN̂ (X γ) = X γ · (2N̂−1) , (6) 

where we assume X to be normalized to [0, 1]. More specifically, when simulating 
X from a high-bit digital signal, we divide the digital signal by 2N−1 for an N -bit 
signal. For a faithful simulation of an analog signal, N needs to be significantly
larger than our target bit depth N̂ . The resulting γ-Quant approach can learn
to resemble a simple linear quantization (γ = 1), compress large values more
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strongly (γ  <  1), or compress small values more strongly (γ > 1), see Fig. 2, 
right .

When applying γ-Quant to body-worn sensors for HAR, we use the full app-
roach (1) as data is typically normalized to [−1, 1] and offsets can be important. 
Explicitly writing out the linear quantizer for [−1, 1] our approach becomes 

Q(X ,  γ,  µ) = round ((sign(X − µ) · |X − µ|γ) + 1)/2 · (2N − 1) , (7) 

resulting in exemplary curves illustrated in Fig. 2 on the left. As the function (7) 
is non-differentiable at X = µ for γ  <  1, we found the replacement of |X − µ|γ 

by (|X − µ| + )γ for a small , e.g. = 10−3 to stabilize the training process.

Fig. 2. Exemplifying different γ-Quant quantization for HAR on [−1, 1] data (left) 
and obj ect detection on [0, 1] data (right).

4 Experiments on Learnable Quantizations 
for Accelerometer-Based Human Activity Recognition 

As a first use case of our γ-Quant we focus on inertial sensors, specifically 
accelerometers used in the context of Human Activity Recognition. The following 
will outline datasets used as well as experiments conducted. As accelerations 
measured by wearable sensors can go in both directions, value ranges of the 
in vestigated datasets are between [−1, 1]. We thus apply the version of γ-Quant
for wearable accelerometer data as shown in (7). 

4.1 Datasets 

In total, we investigate five wearable accelerometer datasets (see Table 1). The 
WEAR dataset [2] records participants outdoors, while performing a set of
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workout-related activities such as running, stretching and strength-based activ-
ities. Similarly, the Hang-Time [18] dataset records a team of basketball players 
during their practice session consisting of a warm-up, drill and game s ession.
Recorded in a biology wet lab, the Wetlab dataset [39] records recurring activ-
ities, such as pipetting, occurring during a DNA extraction experiment. Lastly,
the RWHAR [42] and SBHAR dataset [37] has participants consists of various of 
locomotion activities such as walking stairs, with the SBHAR dataset providing 
annotations of additional transitional activity periods that mark the transition 
from one to another activity. Note that all but the RWHAR dataset provide 
continuous recording data, thus pro viding an additional NULL-class which rep-
resents times during the recording participants did not perform any of the activ-
ities of relevancy.

Table 1. Investigated HAR datasets. Table provides: participant count, activity count 
(classes), sensor axes count and overall recording scenario. E ach sensor axes provides
accelerometer data sampled at 50Hz.

Dataset participants classes axes scenario 
WEAR [2] 18 19 12 body-weight work out
Wetlab [39] 22 9 3 laboratory 
Hang-Time [18] 24 6 3 basketball 
RWHAR [42] 15 8 21 locomotion 
SBHAR [37] 30 13 3 locomotion + t ransitional

4.2 Experimental Setup and Implementation 

During experiments, we follow a Leave-One-Subject-Out (LOSO) cross-
validation, where each participant in the dataset is used as the validation set 
exactly once, while all other participants are used for training. We report the 
class-averaged macro F1-score averaged across all validation splits (i.e., par-
ticipants). We further seed-average our experiments repeating each experiment 
using a set of three different random seeds. For all experiments we employ a slid-
ing window of one second with a 50% overlap, normalize all accelerometer signals 
between [−1, 1] using min-max normalization applied across the full dataset, a 
weighted cross-entropy loss and the Adam optimizer, with a learning rate of 
1e−4, weight decay of 1e−6. We train for 30 epochs with a batch size of 100,
using a learning rate schedule that multiplies the learning rate by a factor of
0.9 every 10 epochs. As a model architecture of choice we use the DeepConvL-
STM, a widely-adopted HAR model [34]. For each dataset we compare results 
using linear quantized and γ-Quant quantized accelerometer signals as input, 
differing bit depths to be either 2 or 4. We further provide results using the
raw accelerometer signal as provided by the datasets. We further compare a
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dataset-wide versus sensor-axis-specific learnable quantization using γ-Quant, 
i.e., learning a (γ, µ)-pair for each sensor axis in the dataset. In all experiments 
using γ-Quant we initialize γ with 0.4, as we generally estimate differences 
accelerations close to 0, i.e., fine-grained movements, to contain more informa-
tion than the differences in large accelerations, i.e., strong movements.

4.3 Evaluation Results 

Table 2 presents the per-dataset results of the experiments described above. It 
is evident that with 4-bit linear quantization, performance on the WEAR and 
Wetlab dataset drops significantly compared to using raw data. With 2-bit linear 
quantization, all five investigated HAR datasets witness a substantial decline in 
performance. However, across all datasets, γ-Quant consistently outperforms 
models trained on linearly quantized data. In particular, for the WEAR andWet-
lab datasets, sensor-axis-specific learnable quantizations lead to notable improve-
ments, achieving prediction F1-scores comparable to raw data, even with 2-bit
input.

Table 2. Per-dataset HAR results comparing training using raw data with training 
using linear, dataset-wide γ-Quant or per-axis γ-Quant quantized accelerometer sig-
nals. W e provide results for bit depths N̂ = 2 and N̂ = 4.

WEAR Wetlab Hang-Time RWHAR SBHAR 
Raw data 71 .01 ± 0 .18 25 .61 ± 0 .07 33 .88 ± 0 .09 71 .21 ± 0 .90 54 .58 ± 0 .22 

N̂ =  4  linear 63.74 ± 0.22 21.72 ± 0.18 33.69 ± 0.22 69.78 ± 0.63 52.14 ± 0.26 
γ-Quant 70.14 ± 0.51 23.00 ± 0.24 33.63 ± 0.17 69.28 ± 0.46 52.58 ± 0.20 
γ-Quant(per-axis) 70.17 ± 0.39 23.63 ± 0.20 33.67 ± 0.17 71.16 ± 1.26 52.52 ± 0.21 

N̂ =  2  linear 58.91 ± 0.13 12.62 ± 0.34 28.01 ± 0.14 64.82 ± 0.62 33.02 ± 0.39 
γ-Quant 60.45 ± 0.43 12.94 ± 0.18 30.67 ± 0.12 71.41 ± 0.51 40.18 ± 0.32 
γ-Quant(per-axis) 63.95 ± 0.14 16.85 ± 0.54 30.60 ± 0.22 69.21 ± 0.32 41.88 ± 0.32 

Figure 3 illustrates representative quantization functions learned during HAR 
experiments. The left subplot shows that different datasets yield distinct global 
scaling factors γ, while the learnable offset µ remains close to zero across 
datasets. However, as demonstrated in the right subplot for the Wetlab dataset, 
if γ-Quant is learned individually on a per-axis level, both a negative offset 
(µ  <  0) for the x-axis as well as a positive offset (µ  >  0) for the z-axis of the sen-
sor are learned. Supported by the overall pattern of improved prediction results 
of the per-sensor application of γ-Quant, we hypothesize that the learned offsets
allow a better compensation of the static gravitational components captured by
fixed accelerometers, where certain axes exhibit constant acceleration depending
on their orientation relative to the ground. This compensation works especially
well for sensors whose orientation is rather static, e.g., because they are placed at
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body parts that do not exhibit strong rotations, e.g., the chest or waist of a par-
ticipant, or capture mostly activities, which do not exhibit strong movements 
such as sitting. Conversely, one can only expect smaller gains from per-axis 
quantization on sensors which exhibit frequent changes in orientation due to
fast movements of e.g. sport-related activities such as present in the Hang-Time
dataset, as gravitational components do not remain static.

5 Experiments on Learnable Quantizations for Object 
Detection on CMOS Sensor Data 

5.1 Datasets 

We use the PASCAL RAW dataset [32] having a bit-depth of 12, with three 
classes, namely ‘Car’, ‘Bicycle’, and ‘Person’. The training data consists of 2129 
images, and the test data is 2130 images. Experiments on a second data set,
RAOD [46], can be found in the appendix.

Fig. 3. Visualization of exemplary learned quantization function using γ-Quant.  The  
left plot shows the per-dataset learned quantization functions. The right plot shows the 
per-axis quantization functions when predicting the Wetlab dataset. γ and µ values in
both plots are averaged across validation splits.

5.2 Experimental Setup and Implementation 

We use the mmdetection [8] framework from openmmlab for conducting experi-
ments. Following previous works [32,46] that perform object detection on RAW 
images, we used Faster-RCNN [36], and PAA [19] models with p re-trained
ResNet50 [17] backbone. We conduct experiments by quantizing the Bayer pat-
terned higher bit-depth RAW images to lower bit depths of 4, 6, 8, and 12 using
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Fig. 4. Results with γ-Quant, log and linear quantization on PAA and FasterRCNN 
for different bit depths. The blue dashed lines represented the performance of the model
on sRGB input images.

γ-Quant and compare against Linear quantization (Linear Quant) as well as
the logarithmic quantization (4). The Bayer pattern RGGB image is viewed as 
a four-channel image, subsampled, and converted to a three-channel RGB image 
by averaging the two green channels. All the images are scaled to a range of [0, 
255] before being used as input to the neural network. We report the following 
quantitative evaluation metrics: mean average precision (mAP) is calculated by 
averaging the Average Precision (AP) values across the intersection over union
(IoU) thresholds ranging from [0.5, 0.95] with a step size of 0.05, resulting in
10 threshold values. We also report performance with IoU-thresholds of 0.5 and
0.75 (AP50 and AP75) for each case.

Following the multi-scale training setup commonly used [25,36], during train-
ing, the shorter image side is scaled to one of the sides randomly selected from a 
set of sides: [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] using nearest 
neighbor interpolation and the longer side is scaled to maintain the aspect ratio. 
At test time, the shorter edge length is kept at 800. We use a batch size of 16 
and train the FasterRCNN model for 140 epochs and P AA for 70 epochs. For
FasterRCNN, we apply warm-up for the first 1000 iterations, linearly increasing
the lr from 1e−4 to 2.5e−3 followed by a multi-step learning rate scheduler. We
use SGD with Nestrov Momentum [41] as the optimizer with a weight decay of 
1e−4. For PAA, we apply a warmup strategy for the first 4000 iterations, fol-
lowed by cosine annealing for the learning rate schedule. The base learning rate
is set to 1e−3, with a weight decay of 1e−3.
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5.3 Evaluation Results 

To demonstrate the effectiveness of the proposed γ-Quant,  we  design  a  set  of  
experiments across 4 different quantization levels, i.e., 4, 6, 8, 12 bits. For every 
quantization level, we run three quantization methods, namely, linear quantiza-
tion, logarithmic quantization as shown in (4), and γ-Quant. The quantitative 
results obtained for different bit depths using the three mo dels on PASCAL
RAW are presented in Fig. 4. 

We observe that performance with 4-bit linear quantization is the worst 
across all architectures. Low-bit linear quantization is especially hurting details 
in lower luminance regions, which account for a majority of the intensity val-
ues and therefore result in the lowest performance. Results with γ-Quant show 
systematic improvement across both architectures. In particular, there is surpris-
ingly little difference between the different bit depths, indicating that - although 
a 4-bit image might not be visually pleasing - it is a sufficient bit depth for faith-
ful object detection. Moreover, it is highly encouraging that the performance 
on standard (ISP processed) R GB images is met or even surpassed: γ-Quant
learns to scale the distribution of pixel values such that low-intensity pixels are
amplified, thus providing more contrast in the input. This allows features and
details to be better visible, enabling the model to learn more informed feature
representations.

Our experiments demonstrate that the log-quantization (4)  performs  on  par  
with our proposed γ-Quant. While this might be discouraging at first glance, 
such results are based on a well chosen value of , i.e., =  1  when simulating ana-
log signals with digital 12-bit raw data or, correspondingly, ≈ 0.00024414 for 
analog signals scaled to [0, 1]. More concretely, for an analog signal, there is no 
natural , such that it becomes a hyperparameter to be tuned. Our framework 
can be seen as an automatic (differentiable) way of learning such a hyperpa-
rameter. In particular, in log-quantization could also be learned in the same 
framework. While this (and further much more flexible) parametrizations of 
the quantization are an interesting direction for future research, we decided to 
study γ-Quant for the sake of simplicity: The range of the output in the log-
quantization depends on such that a rescaling to [0,1] needs to be included
in the learning. Our γ-Quant automatically preserves the [0, 1] range. We thus
consider the fact that γ-Quant reaches the performance of a logarithmic quan-
tization to be encouraging. In particular, for FasterRCNN, the learned values of
γ are 0.294, 0.338, 0.354, 0.359 for 4, 6, 8, and 12 bits, respectively. Thus, the
logarithmic shape of the curve is learned to be optimal and does not need to be
derived from prior assumptions that might be violated in significantly different
application scenarios.

6 Conclusion 

Our proposed task-specific quantization framework, γ-Quant offers a signifi-
cant advancement in optimizing the non-linear quantization of ADCs for pattern



γ-Quant: Towards Learnable Quantization for Low-Bit Pattern Recognition 69

recognition with different modalities. By moving beyond traditional high-bit-
depth linear quantization and manual choice of a non-linear quantization (e.g., 
based on human perception), we develop an automatic task-aware quantization 
framework. This helps achieve substantial improvements in object detection and 
human activity recognition from body-worn sensors with sensor hardware con-
straints such as energy consumption and memory usage compared to traditional 
data processing pipelines. Our results highlight the potential of γ-Quant to 
maintain the performance of high-bit data in different tasks while minimizing 
energy consumption, memory usage, and data transmission costs, ultimately con-
tributing to more e fficient and sustainable machine learning workflows. While
our current work is focused on hardware constraints at the sensor, in the future,
we would expand on this framework to combine efficient network architectures
and network quantization for inference, offering further improvements in com-
putational efficiency.

Limitations: It is impossible to have a dataset with truly analog signals. Thus, 
in our work, high-bit depth RAW images serve as a proxy for analog signals. 
While this is a valid assumption that stems its roots in signal processing theory, 
there is still some loss of information between true analog and high-bit depth 
RAW input. Ideally, we would like to test our proposed γ-Quant on sensors 
directly to work on analog signals, with the potential benefit of further gains in
accuracy.
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