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Abstract: Total organic carbon (TOC) is used to determine the total amount of organic compounds in
water. It has been used to indicate water purity levels for industrial water for decades. Analyzing TOC
in water is often time-consuming and an expensive activity, requiring the use of multiple high-
precision sensors. Our main aim of this study was to compare the use of the Random Forest (RF)
algorithm, one-dimensional convolutional neural network (1D-CNN), and multilayer perceptron (MLP)
in predicting TOC using water quality parameters selected based on their strength of correlation. RF
was chosen because it can model complex interactions between the various parameters and is resistant
to overfitting. ID-CNN can handle local dependencies and spatial relationships between input features
whereas MLP handles independent numerical features in the dataset. The dataset was obtained from
analysis done in Puget Sound marine waters around Seattle King County in the USA at the Duwamish
River at three sampling locations. Learning curve analysis demonstrated that the dataset size was
sufficient for stable training and generalization, while five-fold cross-validation confirmed consistent
model performance across data splits. The effects of wet and dry seasons on the parameter levels were
done and their impact on RF model accuracy was assessed. The selection of parameters based on Gini
importance ranking was done to evaluate their effect on the accuracy of the RF model. Our results
indicated that the prediction of TOC using RF regression was the most accurate with a coefficient of
determination (R?) of 0.732. The 1D-CNN and MLP had R? of 0.714 and 0.638, respectively. The
mean absolute error (MAE) for RF, 1D-CNN, and MLP were 0.120 mg/L, 0.244 mg/L and 0.270 mg/L,
respectively. It was concluded that the RF algorithm would be more feasible in predicting TOC in river
water than the two deep learning methods.
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1. Introduction

Access to clean water is important for our ever-growing population in the world today.
About 0.3% of the water resources is fit for consumption [1,2]. Water shortages exist in many regions,
with more than one billion people lacking adequate drinking water. The annual global water demand
stands at 4600 km? [3]. Rivers act as sources of drinking water and are the basic elements in sustainable
development especially in industrial and agricultural activities. Activities such as the use of chemical
fertilizers, animal husbandry, mining, and combustion of fossil fuels affect the quality of all natural
water bodies the most [4].

Total organic carbon (TOC) is important in determining the quality of water. It is vital for
ecosystem properties and water quality for human use [5]. TOC also indicates the degree of
mineralization of toxic organic pollutants in the water. It is critical in determining the degree of
biodegradation and purification of water. It measures the amount of carbon present in the water as
particulate and dissolved organic molecules. It is the sum of two fractions: (i) The dissolved organic
carbon (DOC), and (ii) the particulate organic carbon. TOC is a potential alternative to both the
chemical oxygen demand (COD) and the biochemical oxygen demand (BODs) tests and is more
precise than the COD test in measuring water quality [6]. Acquiring accurate and reliable TOC
measurement is a labor-intensive, expensive, and time-consuming laboratory activity [7]. It requires
catalytic oxidation with temperatures of up to 680°C. To measure TOC, there is a need to invest in a
total inorganic carbon (TIC) removal device to give a more accurate measurement. To produce reliable
results, manufacturers of TOC analyzers occasionally have to specify TIC limits required in samples.
This poses a challenge when measuring low levels of TOC when high levels of TIC are present in
water because it can lead to over or under-reporting of TOC. Accurate prediction of TOC using
machine learning techniques using easily measurable water quality parameters can help address this
challenge.

Several researchers have explored the use of different ML techniques in predicting TOC in natural
streams. The researchers in [8—10] explored the application of Artificial Neural Network (ANN),
kernel extreme machine learning, and extreme machine learning models with different activation
functions to estimate TOC levels in rivers. It was found that Kernel-based extreme learning machine
was more accurate tool to predict TOC concentration in river water than the other methods. Neural
networks mimic the human brain by using neurons to solve regression problems. Alizadeh et al. [11]
studied the use of ANN to model the relation between wireline logs and TOC content in source rocks.
ANN gave more precise results compared to a method that uses porosity and resistivity logs in
determining TOC content in source rocks. Asgari Nezhad et al. [12] used multilayer perceptron neural
network (MLP) and Sequential Gaussian Simulation (SGS) for estimation and simulation of TOC
geochemical parameters. According to their research, the MLP model was more accurate than the SGS
model. Back Propagation Neural Network (BPNN) machine learning algorithm has also been used to
predict TOC levels. It contains an input layer, a hidden layer, and an output layer. The processing units
in one layer form a connection with those in another layer, whereas the processing units in the same
layer do not form a connection [13]. It is one of the simplest of all the machine learning algorithms
because it is easy to train and can be established quickly [13]. However, the main drawback of BPNN
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is that it easily becomes stuck in local minima during optimization, which greatly reduces its reliability
when predicting TOC [13].

To overcome the limitation of BPNN of low convergence rate and instability, some investigators
explored the use of support vector machines (SVM) to predict TOC. SVM is a supervised learning tool
used for classification and regression tasks. It uses mathematical relations to determine the optimal
hyperplane that separates data points of different classes using maximum margin technique [13]. Tan
et al. [14] investigated the use of SVM regression for TOC content prediction from wireline logs in
organic shale. Their study revealed that SVM technology is a powerful tool for TOC prediction and is
more effective and applicable than a single empirical model, AlogR, and some network methods. A
study carried out to determine TOC using SVM and well logs showed similar results [15].
Bolandi et al. [16] also concluded that SVM is better than ANN in predicting TOC while analyzing
the organic richness of source rocks [17]. Rui et al. [18] studied TOC content prediction based on SVM
with particle swarm optimization. The SVM method was more accurate in the prediction of TOC
compared to AlogR and multilayer perceptron based on the R?. SVM have been shown to obtain a
better prediction results for low-dimensional data comprising a small number of samples [13].
However, when the input data is noisy and large its efficiency is reduced [19]. On the other hand, SVM
does not have a feature abstraction capability like multi-hidden-layer neural networks, resulting in a
weaker prediction effect on engineering problems with certain ambiguities such as well logging
evaluation [13].

One dimensional convolutional neural network (1D-CNN) is a powerful regression tool because
it can extract patterns from sequential data inputs and reduce noise through its convolutional layer [20].
Asante-Okyere et al. [21] developed a CNN model for TOC prediction based on mineralogy and
geophysical well log data. In the study, the CNN model based on mineralogical data logs had better
accuracy than those using geophysical well logs with R? of 0.86 and 0.748, respectively. This means
that the choice of log input data into the CNN models affects the accuracy of the results. In another
study, while conducting multiple linear regression for predicting BOD in river water, it was also noted
that the choice of input variables affects the accuracy of the model during regression [22].

Random forest (RF) is a classic algorithm derived from decision tree theory and ensemble
learning theory that contains a collection of decision trees. There is no relationship between each
decision tree; therefore, each tree is independently modeled. Emphasis is placed on the randomness
[23], and when modeling, samples are picked from the training set at random during each training
iteration [23]. Because they exert the strength of ensemble learning through random means, RF
methods have a high prediction accuracy and a strong generalization ability [24]. They can also handle
large amounts of data in training datasets by building more decision tree models, and they do not
require data normalization and are adaptable to data with unbalanced distributions [13]. Sun et al. [17]
compared the use of RF, SVM and XGBoost to predict TOC Content in Organic-rich shale and found
that RF had improved accuracy over SVM and XGBoost techniques.

These ML techniques have different benefits and drawbacks that depend on their applications.
Their development and use in natural rivers and streams need to be assessed. In this study, we present
models for predicting TOC in Duwamish River water that use RF, 1D-CNN, and MLP machine
learning algorithms. These three algorithms were chosen because each have their own strengths to
handle the kind of dataset available for this study. RF is robust to noise and is less sensitive to outliers
in the dataset. It also has feature importance analysis that evaluates the parameters that matter most in
the regression task. 1D-CNN is efficient at local pattern detection, and captures features like trends,
spikes, and periodicity using filters. MLP, on other hand, is a good baseline model that is simple to
implement. It is good as a benchmarking algorithm to analyze and evaluate neural networks. We
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compare the accuracy and efficiency of the three algorithms in predicting TOC. The information herein
provides an important foundation for the development of natural stream TOC prediction models using
ML.

In this study, we aim to (i) develop predictive tools using RF, 1D-CNN, and MLP machine
learning techniques for measuring TOC; (ii) assess the accuracy of RF, 1D-CNN, and MLP in
predicting TOC; and (ii1) assess the efficiency of RF, ID-CNN, and MLP in predicting TOC. The water
quality parameter logs were taken from Duwamish River in Puget Sound along the northwestern coast
of'the U.S. state of Washington. There have been limited studies on the development of TOC prediction
models using ML in natural streams.

2. Materials and methods
2.1. Study area and dataset description

The dataset used for this study contained water quality parameters analyzed continuously at three
sampling locations in the Duwamish River basin, including South Park Bridge, Harbor Island Marina,
and East Waterway in the Puget Sound, USA. The three locations were designated in the dataset as
LTMUO03, LTKEO3, and HNFDO1, respectively. The three were chosen out of 191 sample locations
for the analysis because they had the most complete datasets. The dataset contained water quality
parameter logs collected and updated continuously from 215 October 1965 up to 20™ March 2023. A
sample preview of seven columns and the corresponding first five rows of the dataset is shown in
Table 1.

Table 1. A preview of the dataset (source: https://catalog.data.gov/dataset/water-quality).

Collection date and time ~ Depth (m)  Locator Parameter Value Units Analysis method
9/21/2015 10:29 54.2 JSURO1  Temperature 13 deg C CTD

6/17/2015 10:43 1 NSAJ02  Silica 0.951 mg/L Whitledge 1981
6/7/2016 10:13 178 LSNTO1  Light Intensity (PAR) 0 umol/sm*> CTD

8/15/2016 13:22 1.5 LTUMO3 Salinity 17.9 PSS SM2520-B
5/18/2015 9:22 196 KSBP0O1  Chlorophyll, Field 0.75 ug/L CTD

From Table 1, the locator is a feature that assigns a distinctive identification of the area and
particular locations where the samples are drawn from. The total number of unique locators are 191.
The parameter column contains a total of 57 quality parameters that were measured at different
locations, as per the standard procedures shown in the analysis methods column.

2.2. Dataset size suitability and model validation

Random Forest, MLP, and 1D-CNN models were validated using learning curve analysis and k-
fold cross-validation to assess their predictive stability and to determine the sufficiency of the dataset
size for the regression task. Learning curves were generated by progressively increasing the training
data from 10% to 100% of the dataset and obtaining the corresponding training and validation R?
values. For this analysis, a 5-fold cross-validation procedure was applied. The dataset was partitioned
into five equal subsets, with each fold serving once as the validation set, while the remaining folds
were used for training. For each fold, the R%, mean squared error (MSE), and mean absolute error
(MAE) were computed, and their mean values and standard deviation reported to represent each model
performance.
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2.3. Data preprocessing

The variables in the parameter column were pivoted and filtered into their respective columns
using the collect date, depth, and locator groups. They were then filled with their respective values in
the ‘Value’ column. Where there was more than one value at a cell intersection, the mean was
evaluated and filled up. The distribution of the parameter values in the 191 sample locations was
analyzed to determine the locations that had the most sample collection campaigns with the least
number of missing data points. The missing data points were filled using the k- nearest neighbors
imputation algorithm. The common outliers among the parameters were identified and removed from
the dataset using elliptic envelope method with a 95% confidence level.

The Pearson correlation coefficient, r, was used to evaluate the coefficient of association between
the parameters with TOC in the dataset. The guidelines given by Schober and colleagues was used to
determine the direction and strength of the linear relationship [25]. The parameters that depicted
moderate to strong positive or negative correlation was used for the regression task.

For statistical analysis, and to better understand how the parameters were affected by the seasons,
the data was split into the dry and wet season category, as per the dates illustrated in Figure 1.
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Figure 1. Dry and wet seasons in Seattle: https://weatherspark.com/y/913/Average-
Weather-in-Seattle-Washington-United-States-Y ear-Round.

This shows the distinction between the dry and wet seasons and chance of precipitation
occurrence throughout the year at the sampling location. From Figure 1, a wet season is from mid-
October to April, and November is the wettest month (whereas the dry season is from May to mid-
October), while August is the driest month.

Analysis of Variance (ANOVA) was used to evaluate the level of significance of the mean values
of the parameters based on the dry and the wet seasons. The permutations test was also used to test the
significance levels of the parameters at the two seasons. The Pearson correlation coefficient between
the parameters in the two seasons was also analyzed for comparison.

2.4. Random forest regression

Random forest regression algorithm was used to predict TOC using water quality parameters that
had moderate to strong negative or positive Pearson correlation coefficient,  of greater than 0.36. The
data split for the ML algorithm was kept at 80% and 20% for the training and testing set, respectively.
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The sample sets were created from the random sample using the bootstrap ensemble aggregation
method. The Gini impurity factor was used to rank the features and better understand variable
contribution to the regression algorithm. The MAE, mean squared error (MSE), and the R? were used
to determine the model accuracy.

The depth and the number of decision trees were optimized to achieve the highest prediction
accuracy of the regression model. The depth and the number of decision trees were varied through
permutations using python programming algorithm on the values shown in Table 2.

Table 2. Decision tree hyperparameter variation.

Hyperparameters Variation levels
Number of decision Trees 50 100 150 200 250 300 350
Depth of decision trees 5 10 15 20 25 30 35

For the RF model, hyperparameters, including the number of estimators (number of decision trees)
and maximum tree depth, were optimized using Grid Search in the sklearn learn library in python. The
algorithm would first pick the number of decision trees and the depth as varied and then run the
regression task. It would then evaluate the accuracy of the pair using performance metrics defined.
Finally, after running all the pairs, the algorithm would pick the best performing pair for the regression
task. The model parameters used for RF algorithm are those that exhibited good correlation with TOC.
The parameters include depth, light transmissivity, dissolved organic carbon, date, total suspended
solids, silica content, orthophosphate phosphorous content, salinity, and density.

2.5. 1ID-CNN regression algorithm

As a basis of precision comparison between ML algorithms, other deep learning models (1D-
CNN and MLP) were used to predict TOC using the same water quality parameters used in the RF
algorithm. 1D-CNN contains the input layer, the convolution layer, the pooling layer, the flatten layer,
the fully connected (dense) layer, and the output layer.

Nine input water quality parameters, including DOC, sampling date, depth, density, silica,
orthophosphate phosphorous, light transmissivity, date, and total suspended solids, were used in the
ID-CNN regression task. The model parameters were selected on the basis of their correlation strength
with TOC. The number of convolutional layers were varied from 1 to 3 to determine the optimal
number of layers required to yield higher accuracy in TOC prediction. The number of filters and the
kernel size hyperparameters in the convolutional layer were also optimized. The MSE, MAE, and the
R? were used as performance metrics. The number of filters were varied from a minimum value of 32
to a maximum value of 512 with a step interval of 32. The values of kernel sizes were 3, 5, and 7. The
Rectified linear unit was used as the activation function in the convolutional layer to introduce the
property of nonlinearity and reduce the dimensionality of the feature maps produced by the
convolutional layer.

The max pooling method was used to select the maximum value from each patch of the feature
map. The data was then fed into the flattened layer to convert into a one-dimensional array ready to be
fed into the fully connected (dense) layer. The number of dense layers and neurons in each layer were
optimized as follows: The number of dense layers were varied from 1 to 10, and the neurons in each
layer varied from a minimum value of 32 to a maximum of 512 using a step interval of 32. There was
only one output layer that was the predicted TOC from the parameters fed at the input. The dataset was
set into a validation split of 20% placed at random. In this study, the number of epochs during the deep
learning process was also optimized. This was done by setting the maximum number of epochs to 100,
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using the early stopping criterion, and setting the patience to 5. Minimum validation loss at every
epoch was evaluated and iterated until the minimum values were achieved. The optimal number of
passes through the training dataset that leads to the best performance of the model on unseen data was
evaluated and optimized using the validation dataset.

2.6. The multilayer perceptron regression algorithm

Multilayer perceptron regression was used to train the dataset to obtain a desired output in the
regression operation. It contains an input layer, hidden layers, and the output layer. In this study, the
input into the model was the water quality parameters similar to those used in the RF and the 1D-CNN
algorithms, and the output was the predicted TOC. The nine neurons from the input layer were fed into
the hidden layer where the activation function (ReLU) was applied. The number of hidden layers and
the neurons in each layer were optimized using the MAE as the performance metric for the model. The
number of training epochs were also optimized using the early-stopping criterion while setting the
patience to 5.

3. Results and discussion
3.1. Dataset preprocessing

The dataset was analyzed for completeness for the three sampling locations, and the results are
shown in Table 3. The parameters with less than ten datapoints of the possible 1187 were excluded
from the regression task while those with more than 74% data completeness and with moderate to
strong negative or positive correlation coefficient, » of greater than 0.36 with TOC were used as input
regression parameters.

Table 3. Dataset summary.

Parameter Number of data points Percentage missing datapoints
Depth 1187 0
Total Organic Carbon 1187 0
Density 1187 0
Dissolved Organic 1185 0.16
Light Transmittance 1143 3.70
Orthophosphate Phosphorus 871 26.62
Silica 1181 0.50
TSS 1177 0.84
Salinity 1187 0
Date and Time 1187 0

Orthophosphate phosphorus had the highest number of missing data points at 26.62%. The rest
of the parameters had less than 4% out of the possible 1187 data missing. The missing data points were
imputed using k-nearest neighbors imputation algorithm from the sklearn impute library in python by
setting the value of k£ as 5. Common outliers among the parameters were identified using elliptic
envelop method with a 95% confidence level. Forty-two outliers were identified and removed from
the dataset, resulting in 1145 complete sets of data.
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3.2. Dataset size suitability and model validation

To analyze the suitablity of the dataset size for regression task using the three models, learning
curves and k-fold cross validation analysis were conducted. Figure 2 shows the learning curve for RF,
1D-CNN, and MLP.
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Figure 2. Learning curves for Random Forest, 1D-CNN, and MLP models showing stable
convergence of training and validation.

From Figure 2, the learning curves for RF, 1D-CNN, and MLP models demonstrate that the
dataset size used was large enough to enable stable model training and meaningful generalization. For
RF curves validation R? values rises steadily converging near 0.81 at full training data usage while
maintaining a high training R? of about 0.96. This implies that RF has a strong predictive ability with
marginal overfitting. The 1D-CNN demonstrated the most balanced performance, with training and
validation R? values ranging between 0.78 and 0.82 at higher data fractions, indicating that the model
effectively captured nonlinear dependencies without significant variance errors. The MLP curve
showed validation R? gradually approached the training R? as the training fraction increased,
stabilizing at 0.6 with a training R* of 0.9, implying adequate learning capacity. Collectively, the
consistent convergence of validation scores across all models as the training fraction increased
suggested that the dataset size of 1145 data points was adequate for model generalization, with only
minor gains expected from additional data. This agreed with the works of the researchers in [26] who
suggested that for machine learning models, the minimum dataset size should be >1000 for better
accuracy. Among the three models, RF and 1D-CNN displayed superior generalization compared to
the MLP, underscoring their suitability for capturing complex relationships within the dataset. Table 4
shows the mean values of the performance metrics of the three models using 5-fold cross validation
analysis to assess the model’s stability.

Table 4. Mean performance metrics of 5-fold cross validation analysis for RF, 1D-CNN, and MLP.

Performance Metric RF 1D-CNN MLP

Test R? 0.771£0.031 0.736 £0.036  0.757 £0.039
MSE 0.096 £0.020 0.109+0.022 0.101 £0.022
MAE 0.200+0.017 0.226+0.019 0.216 +0.018

The 5-fold cross-validation analysis provided a robust measure of model stability. The RF model
achieved the highest predictive performance overall due to its ability to handle nonlinear relationships
and feature interactions efficiently without requiring extensive parameter tuning. From the test R?
values, the MLP model slightly outperformed the 1D-CNN, which could be attributed to the relatively
small and tabular nature of the dataset, where fully connected networks tended to generalize more
effectively than convolutional architectures that were optimized for sequential or spatially correlated
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data. The low standard deviations (< 0.04) across folds indicated stable performance and minimal
sensitivity to data partitioning, thus indicating the adequacy and representativeness of the dataset.
Collectively, the convergence of the learning curves and the consistency of cross-validation results
suggested that the dataset size used was robust for model training and was reliable with limited benefits

expected from additional data and could be used effectively for predictions of total organic carbon
concentrations in river water.

3.3. Parametric correlation

The strength of the relationships between TOC and other water parameters were determined. The
scatter plots showing parameters with positive and negative correlation with TOC are presented in
Figures 3 and 4, respectively, and the pair-wise correlation matrix is shown in Table 5. The scatter plot
of TOC with DOC shows that the data points were closely clustered around the regression line whose
trend indicated a positive linear relationship. The correlation matrix showed that the value of » for the
TOC- DOC pair was 0.852, indicating a strong positive linear relationship. The strong correlation was
expected because DOC is the soluble portion of TOC. The other parameters that had a positive linear
correlation with TOC were silica and total suspended solids, and those exhibiting negative linear
correlation were orthophosphate phosphorus, density, light transmissivity, salinity, and depth. The
relationships between TOC and these water parameters were linear but exhibited a significant amount
of scatter. The directionality and strength of correlation was supported by the Pearson correlation
coefficients in Table 5. Based on the guidelines of Schober et al., [25] all the water parameters were
moderately to strongly correlated with TOC (|r[>0.40). The exceptions were depth and total suspended
solids, having 0.36<|r|<0.40, which was within the window of a linear relationship [27]. Parametric
correlations suggested that a linear model may have been used to fit the data to TOC.
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Figure 3. Scatter plots of TOC versus water quality parameters with positive linear
correlation: DOC, silica, and Total suspended solids.
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TOC vs Orthophosphate phosphorus scatter plot TOC vs Density scatter plot TOC vs Light transmissivity scatter plot
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Figure 4. Scatter plots of TOC versus water quality parameters with a negative linear
correlation: Orthophosphate phosphorus, density, light transmissivity, salinity, and depth.

Table 5. Pearson correlation matrix.

Light Orthophosphate
Parameter Depth Density DOC Transmissivity  Phosphorus Silica TOC TSS Salinity  Date
Depth 1.000
Density 0.505 1.000
DOC -0.311  -0.429 1.000
%‘ght o 0444 0558 0483 1.000
ransmissivity
Orthophosphate
Phosphorus 0.499 0.799 -0.351 0.550 1.000
Silica -0.534  -0.850  0.455 -0.574 -0.736 1.000
TOC -0.370  -0.456  0.852 -0.553 -0.423 0.472 1.000
TSS -0.114  -0.296  0.260 -0.554 -0.257 0.242 0.361 1.000
Salinity 0.534 0.977 -0.465 0.601 0.814 -0.917  -0.492 -0.306 1.000
Date 0.066 -0.006  -0.483 0.278 -0.065 -0.094  -0.483 -0.106  0.045 1.000

Time may influence water quality parameters through seasonal changes in precipitation and
temperature. The influence of time on water quality parameters was examined graphically through
time series analyses. The various dates and time were converted into equivalent time stamps to enable
the scatter plots to be plotted over the time scale. Figure 5 shows time series plots for orthophosphate,
silica, density, and salinity taken from the year 2005 to the year 2022 in the river. The four parameters
showed the strongest variation with time (Supporting Figure 1). In Figure 5, orthophosphate
phosphorus had a clear periodic pattern with consistent peaks and troughs. This meant that the levels
of orthophosphate phosphorus were influenced by seasonal changes. Silica levels had similar patterns
to those of orthophosphate phosphorus but comparable periodicity. Density exhibited sinusoidal trend
in the upper range values similar to that of salinity. This was in agreement with the strong correlation
between density and salinity in Table 5 and the work of others [28]. Seasonal or periodic changes of

Applied Computing and Intelligence Volume 5, Issue 2, 264-285.



274

orthophosphate phosphorus, silica, depth, and salinity with time did not seem to significantly influence
TOC. The target variable (TOC) did not portray a periodic trend, whereas the input variables exhibited

periodic and non-periodic trends.

Time Series plot for Orthophosphate Phosphorus
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Figure 5. Time series scatter plots for parameters with periodic pattern: Orthophosphate
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Figure 6 illustrate the parameters that had no regular periodic oscillations. Light transmissivity
exhibited an irregular trend with no cyclic pattern. This meant that seasonal changes through the years
do not affect light transmissivity in the river water, and the changes in the levels of light transmissivity
are influenced by factors other than seasonal variations. This is in agreement with findings by Nicolaus

et al. [29].
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Time Series plot for Dissolved Organic Carbon
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Figure 6. Time series scatter plots for parameters without nonperiodic pattern: Light
transmissivity, dissolved organic carbon, total organic carbon, and total suspended solids.

3.4. Statistical comparisons of the dry and the wet season

Since the data set had parameters that showed periodicity in their values, a comparison was carried
out for parameter values for the dry and wet seasons. A split of the dataset based on the wet and dry
seasons resulted in datasets containing a total of 666 and 479 datapoints, respectively. A comparison
of the Pearson correlation coefficient for the two seasons is shown in Figure 7. The Pearson correlation
coefficient for the dry and wet season between water quality parameters and TOC were higher in the
wet season than those in the dry season. The only exception was TSS. Therefore, the levels of
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precipitation impacted the correlation of TOC with the water quality parameters. This agreed with the
findings of Correll et al. [30].
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Figure 7. Pearson correlation coefficients between water quality parameters and TOC for
the wet and dry seasons.

Analysis of variance (ANOVA) on the water quality parameters from the three sampling sites on
Duwamish River for the dry and wet seasons was carried out. This is summarized in Table 6. The p-
value indicated the probability of observing a difference in the means of the data during the wet and
dry seasons, respectively, assuming that there was no true difference between the two seasons. At
a 95% confidence level, density, DOC, orthophosphate phosphorus, silica, and salinity had significant
differences in their mean values for the two seasons (dry and wet). This agreed with the findings of
the time-series analysis that density, orthophosphate phosphorus, silica, and salinity showed periodic
variations in their value. It was possible that seasonal variations in DOC variables were masked by
their scatter. Light transmissivity, TOC, and TSS did not have a significant difference between the
mean values of the two seasons. RF, 1D-CNN, and MLP machine learning algorithms were used for
regression analysis of the relationship between TOC and other water quality parameters to evaluate
their performance in predicting TOC values for the mixture of periodic and non-periodic data.

Table 6. Variance, mean, and p-values for the dry and wet seasons.

Parameter Units Mean Variance p-Value
Dry Wet Dry Wet

1. Density Kg/m? 1018.571 1017.721 30.488  51.771  0.028

2. Dissolved Organic Cartbon =~ mg/L 1.529 1.681 0.274 0.422 0.013

3. Light Transmissivity % Light  63.250 63.797 279.518 447.535 0.640

4. Orthophosphate Phosphorus mg/L 0.046 0.057 0.000 0.000 3.67E-16
5. Silica mg/L 5.032 6.756 11.680 14969  6.33E-15
6. Total Organic Carbon mg/L 1.798 1.808 0.366 0.645 0.817

7. Total Suspended Solids mg/L 5.984 6.347 72.069  173.072 0.591

8. Salinity PSS 24.141 22.350 51.828  87.435 3.79E-04
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3.5. RF regression

RF regression was used to develop a predictive model of TOC from the other water quality
parameters. RF hyperparameter values shown in Table 2 were optimized using a python programming
machine learning algorithm, and the results are shown in Table 7. The optimal depth and number of
decision trees were 15 and 150 for the dry season, respectively, and 35 and 50 for the wet season,
respectively. When the two seasons were combined, the optimal depth and number of decision trees
were 20 and 150, respectively. The R* was highest during the wet season at 0.788 and lowest during
the dry season at 0.685. Higher accuracy during the wet season could be attributed to the higher
Pearson correlation coefficient between TOC and water parameters for seven of nine parameters during
the wet season compared to those of the dry season (Figure 7). When the data was taken for the
sampling locations, the coefficient of determination, R?, became 0.732. The scatter plot for observed
versus predicted values of the RF regression model is shown in Figure 8.

Table 7. Random Forest regression results for dry season, wet season, and both seasons combined.

Parameter Dry season  Wet season _ Seasons combined
Optimal depth of decision tree 15 35 20
Optimal number of decision trees 150 50 150
Mean squared Error 0.082 0.083 0.111
Root Mean Squared Error 0.286 0.287 0.334
Coefficient of Determination (R?)  0.685 0.788 0.732
5 e Observed vs Predicted
Ideal Line °
_a
_BJ‘ o
_E, . ° . °
O » o
O 3 >
[ o ge
° o o e
Q * o 4
g ® Cd ':’. {'"‘ s o
el ° ° °
() : Yo .
a . © o i °
. 2 p (o w v B
1 ° 4“& : e .
1 2 4 5

3
Observed TOC (mg/L)

Figure 8. Scatter plots for predicted versus observed values for the RF TOC regression
model: Considering DOC, light transmissivity, date, depth, silica, orthophosphate
phosphorus, salinity, and density as input parameters.

Sampling date, density, light transmissivity, and total suspended solids were considerably cost
effective and easy measurements to take. When these water quality parameters were used for the
prediction of TOC, the coefficient of determination, R?, changed from 0.732 to 0.600. The scatter plot
is presented in Figure 9. Moreover, the more input variables there were, the better the model fit.
However, in a setting where not all the water parameters were available, the model could be used to
provide a reasonable estimate of TOC values.
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Figure 9. Scatter plots for predicted versus observed values for the RF TOC regression
model considering date, density, light transmissivity, and total suspended solids as input
parameters.

Gini importance was used to measure the potential of the variables in their contribution to the RF
regression model. Table 8 shows the variables together with the sampling locations and their respective
Gini importance. As expected, DOC accounted for the highest contributor to the prediction of TOC
because it had the highest Gini factor of 0.779 in the RF regression algorithm. This agreed with scatter
plots of TOC and DOC as well as the pair-wise Pearson correlation coefficient for the two water quality
parameters. Interestingly, the three sample locations in the river had the least contribution to the
prediction of TOC at < 0.2%. This meant that sampling locations in Duwamish River had the least
effect on TOC prediction using the RF regression model. In fact, when the sample locations were
excluded from the RF algorithm, the coefficient of determination (R?) increased from 0.710 to 0.732.

Table 8. Gini importance factors.

Feature Gini Importance
All Features  Excluding sample locations Selected features

Dissolved Organic Carbon 0.779 0.774 -
Light Transmissivity 0.038 0.038 0.133
Date 0.037 0.040 0.465
Total suspended solids 0.029 0.031 0.094
Depth 0.027 0.028 -
Silica 0.025 0.027 -
Orthophosphate Phosphorous ~ 0.025 0.026 -
Salinity 0.018 0.019 -
Density 0.016 0.016 0.309
Location LTKEO03 0.002 - -
Location LTUMO3 0.002 - -
Location HFNDO1 0.002 - -

When sample location was excluded, DOC was significant in the prediction of TOC (Gini

importance of 0.774) followed by the date. In the absence of sample location, the other water quality
parameters had comparable Gini importance values. When date, density, light transmissivity, and total
suspended solids were used as logs, sampling date had the highest Gini importance factor of 0.465.
Since these four parameters were easily measurable, they could be used as a prediction estimate for
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TOC prediction because they gave a coefficient of determination of 0.600. When necessary, and for
higher accuracy, all seven water quality parameters could be used to predict TOC.

3.6. One-dimensional convolutional neural network regression

1D-CNN was used to predict TOC using the same input parameters as those used in RF algorithm.
The input parameters included; DOC, light transmissivity, date, TSS, depth, silica, orthophosphate
phosphorous, salinity, and density. Table 9 shows the optimization results for 1D-CNN regression,
which includes the number of convolutional layers and dense layers optimized. The test loss measures
the difference between the predicted values and the true values. It is aggregated over all the samples
in the test set to give the overall results. In this case, it was determined using the mean squared value.
ThelD-CNN prediction of TOC had a test loss, MAE, MSE, and R? of 0.114 mg/L, 0.244 mg/L, 0.119
mg/L, and 0.714, respectively. The number of convolutional layers and dense layers were 1 and 4,
respectively. The number of neurons varied in each layer, as shown in Table 9. The scatter plot showing
predicted versus observed values for ID-CNN is shown in Figure 10.

Table 9. Optimization results for 1D-CNN

Parameter Value
Test loss 0.114
Mean absolute error, MAE (mg/L) 0.244
Mean squared error, MSE (mg/L) 0.119
Coefficient of determination, R? 0.714
Number of CNN layers 1
Number of filters in CNN 128
Kernel size in CNN 5
Number of dense layers 4
Neurons in dense layer 1 256
Neurons in dense layer 2 64
Neurons in dense layer 3 448
Neurons in dense layer 4 512
Number of epochs 16
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Figure 10. Scatter plots for predicted versus observed values for TOC prediction using 1D-CNN.
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Figure 11 is a training and validation loss curve used to visualize how the number epochs affect
the accuracy of TOC prediction using 1D-CNN architecture. The loss curve shows a rapid decrease in
training and validation loss within the first five epochs. The model converged quickly within the five
epochs, meaning that the model learned effectively. The two curves remained very close, indicating
good generalization and that there was no major overfitting. Both losses were low and stable, meaning
that underfitting did not arise. The optimal number of epochs for 1D-CNN were stopped at 16 to
monitor the performance and prevent overfitting or underfitting during the training process. From the
loss-curves, the 1D-CNN model learned quickly and had good prediction of the true values of TOC.
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Figure 11. Training and validation loss curve for 1D-CNN.
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3.7. Multilayer perceptron regression

A MLP regression algorithm was created to predict TOC using the seven water quality parameters
mentioned in the previous sections. Table 10 shows the optimization results of the MLP regression
algorithm. The test loss, MAE, MSE, and R? for the MLP regression algorithm were 0.151mg/L, 0.270
mg/L, 0.150 mg/L, and 0.638, respectively. The number of hidden layers were optimized to 5 with the
number of neurons in each layer, as shown in Table 10. The scatter plot for the predicted versus the
observed value is shown in Figure 12. During the training of the dataset, the epochs stabilized at 21
when the training loss was 0.155, as shown in Figure 13.

Table 10. Optimization results for MLP for TOC prediction.

Parameter Value
Test loss 0.151
Mean absolute error, MAE (mg/L) 0.270
Mean Squared Error, MSE (mg/L) 0.150
Coefficient of determination, R? 0.638
Number of hidden layers 5
Neurons in hidden layer 1 64
Neurons in hidden layer 2 96
Neurons in hidden layer 3 288
Neurons in hidden layer 4 512
Neurons in hidden layer 5 384
Number of epochs 21
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Figure 12. Scatter plots for predicted versus observed values for TOC prediction using MLP.
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Figure 13. Training and validation loss curve for MLP.

An assessment of the predictive MLP model was done and compared to that of 1D-CNN.
Figure 13 shows training and validation loss curve for the MLP regression algorithm. It had a similar
trend to that of 1D-CNN. The training and validation loss dropped sharply within the first three epochs.
The validation loss curve stabilized at epoch 5, but that of 1D-CNN fluctuated slightly at around
epoch 12. This indicated mild overfitting. The training loss curve was more stable and consistently
lower than the validation curve after 5 epochs. Both losses reached a stable low value and, thus,
underfitting did not present a challenge for this algorithm. Both MLP and 1D-CNN provided good
prediction and fast learning in modeling the data but ran the risk of overfitting [31]. They also lacked
good interpretability, making it hard to extract meaningful insight from the filters or feature maps [20].
ID-CNN requires large amount of labeled data for effective training, especially when the architecture
is deep or the kernel size is large and, therefore, requires more computational resources [32].

3.8. Comparison of model performance in TOC prediction

The performance of RF, 1D-CNN, and MLP in predicting TOC from the nine water quality
parameters was compared. Table 11 shows a comparison of the three algorithms in predicting TOC.
From the results, the RF algorithm had the highest accuracy for TOC prediction with a test R? of 0.732
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and a trained R? 0f 0.969, indicating a strong learning capacity with minimal overfitting. In comparison,
1D-CNN had a test R? of 0.714 and a trained R? of 0.801, and MLP had a test R? of 0.638 and trained
R? of 0.808, indicating a slightly lower training fit. The RF test R? of 0.732 was within the range as
those in [33] where ML models in predicting TOC in river water were used. The accuracy of these
models depends on the target variable and contextual features used [13]. These studies and the cross-
validation results indicated that the predictive accuracy as wis realistic for site-specific monitoring
tasks, and that the model errors (MAE/MSE) remained within practical limits for trend detection and
decision support. RF provided the best fit for data and best captured variance in the data. It also had
the least MAE of 0.120 mg/L compared to that of 1D-CNN and MLP, meaning that RF gave the most
precise predictions in the regression process because the error between the observed and predicted
values was the least. The MSE of 1D-CNN was the lowest (0.119 mg/L) among the three models,
meaning that 1D-CNN performed better in minimizing large and small errors. Therefore, in terms of
performance metrics, RF would be chosen over the two deep learning approaches (CNN and MLP) for
TOC prediction in river water.

Table 11. Performance comparison of RF, 1D-CNN, and MLP regression algorithm for

TOC prediction.
Model Test R? Train R? MAE (mg/L) MSE (mg/L)
RF 0.732 0.969 0.120 0.286
1D-CNN 0.714 0.801 0.244 0.119
MLP 0.638 0.808 0.270 0.150

Deep learning is best suited for handling highly complex relationships in data and requires more
computational resources and time [34]. It also requires data normalization, which can lead to loss of
important data features in regression tasks. The RF algorithm, on the other hand, is easier to interpret
and understand because it is possible to track down where the decisions are made during the regression
task [23]. It is best suited to handle small datasets even with categorical features. RF can handle
datasets without necessarily having to normalize or impute data and maintains accuracy for many
multivariate regression tasks [35]. In this study, it was able to accurately handle input data containing
parameters that exhibited both periodic and non-periodic time series trends without normalization.
When the two deep learning algorithms were compared, 1D-CNN had a higher R? value and lower
MSE and MAE values than the MLP regression algorithm in TOC prediction, indicating it was better
at predicting the true value of TOC. The convolutional layer, which was not there in MLP, had the
ability to capture spatial features and patterns in the dataset [20]. It is difficult to handle data sets that
contain varying features and trends with MLP because it lacks a convolutional layer. Among the three
models evaluated, the RF algorithm demonstrated superior predictive performance compared to the
deep learning approaches (MLP and 1D-CNN). This could be attributed to the nature of the dataset,
which was tabular and moderately sized, making RF particularly effective at capturing complex
nonlinear relationships. RF’s ensemble-based architecture aggregated multiple decision trees, thereby
reducing model variance and enhancing robustness against overfitting. In contrast, the MLP and 1D-
CNN models, although capable of learning intricate feature representations, were more sensitive to
data distribution and architecture configuration. The consistency of RF’s performance was further
confirmed through five-fold cross-validation, where it achieved the highest mean R? (0.771 + 0.031)
and the lowest error metrics (standard deviation) among the models. These results demonstrated RF’s
superior ability to generalize across data folds, demonstrating its reliability for regression tasks on
moderately sized environmental datasets.
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4. Conclusions

In this study, prediction of TOC through measurements of depth, density, DOC, light
transmissivity, orthophosphate phosphorus, silica, TSS, salinity, and date was carried out using the RF
algorithm, 1D-CNN, and MLP deep learning algorithms. Density, DOC, light transmissivity,
orthophosphate phosphorus, silica, TSS, and salinity had a moderate to strong correlation with TOC.
Seasonality, not location, influenced all the water quality parameters except for light transmissivity,
TOC, and TSS. The RF regression algorithm had the highest prediction capability compared to the
deep learning models. The RF regression model was robust in withstanding time series variations in
some water quality parameters. Among the two deep learning models, 1D-CNN had better predictive
ability than MLP. This was attributed to the presence of the convolutional layer, which can handle
complex patterns in the dataset. RF is a powerful robust machine learning regression tool that can be
applied in predicting TOC in the river water by carefully picking the input parameters. It can withstand
parametric variations and is strong enough to handle noise in the datasets. This superior performance
was further validated through five-fold cross-validation, which confirmed the model’s consistency and
minimized bias across data splits. Additionally, learning curve analysis indicated that the available
dataset size was sufficient for model training and that the RF model achieved stable generalization
without overfitting. The findings here provide novel predictive tools that would be useful in low
resource settings or for resource planning when predicting TOC from other water quality parameters.
In the future, researchers could explore advanced gradient boosting frameworks such as XGBoost and
LightGBM to further enhance prediction accuracy and computational efficiency.
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