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Abstract: Total organic carbon (TOC) is used to determine the total amount of organic compounds in 

water. It has been used to indicate water purity levels for industrial water for decades. Analyzing TOC 

in water is often time-consuming and an expensive activity, requiring the use of multiple high-

precision sensors. Our main aim of this study was to compare the use of the Random Forest (RF) 

algorithm, one-dimensional convolutional neural network (1D-CNN), and multilayer perceptron (MLP) 

in predicting TOC using water quality parameters selected based on their strength of correlation. RF 

was chosen because it can model complex interactions between the various parameters and is resistant 

to overfitting. 1D-CNN can handle local dependencies and spatial relationships between input features 

whereas MLP handles independent numerical features in the dataset. The dataset was obtained from 

analysis done in Puget Sound marine waters around Seattle King County in the USA at the Duwamish 

River at three sampling locations. Learning curve analysis demonstrated that the dataset size was 

sufficient for stable training and generalization, while five-fold cross-validation confirmed consistent 

model performance across data splits. The effects of wet and dry seasons on the parameter levels were 

done and their impact on RF model accuracy was assessed. The selection of parameters based on Gini 

importance ranking was done to evaluate their effect on the accuracy of the RF model. Our results 

indicated that the prediction of TOC using RF regression was the most accurate with a coefficient of 

determination (R2) of 0.732. The 1D-CNN and MLP had R2 of 0.714 and 0.638, respectively. The 

mean absolute error (MAE) for RF, 1D-CNN, and MLP were 0.120 mg/L, 0.244 mg/L and 0.270 mg/L, 

respectively. It was concluded that the RF algorithm would be more feasible in predicting TOC in river 

water than the two deep learning methods. 

https://www.aimspress.com/journal/aci
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1. Introduction 

Access to clean water is important for our ever-growing population in the world today. 

About 0.3% of the water resources is fit for consumption [1,2]. Water shortages exist in many regions, 

with more than one billion people lacking adequate drinking water. The annual global water demand 

stands at 4600 km3 [3]. Rivers act as sources of drinking water and are the basic elements in sustainable 

development especially in industrial and agricultural activities. Activities such as the use of chemical 

fertilizers, animal husbandry, mining, and combustion of fossil fuels affect the quality of all natural 

water bodies the most [4]. 

Total organic carbon (TOC) is important in determining the quality of water. It is vital for 

ecosystem properties and water quality for human use [5]. TOC also indicates the degree of 

mineralization of toxic organic pollutants in the water. It is critical in determining the degree of 

biodegradation and purification of water. It measures the amount of carbon present in the water as 

particulate and dissolved organic molecules. It is the sum of two fractions: (i) The dissolved organic 

carbon (DOC), and (ii) the particulate organic carbon. TOC is a potential alternative to both the 

chemical oxygen demand (COD) and the biochemical oxygen demand (BOD5) tests and is more 

precise than the COD test in measuring water quality [6]. Acquiring accurate and reliable TOC 

measurement is a labor-intensive, expensive, and time-consuming laboratory activity [7]. It requires 

catalytic oxidation with temperatures of up to 680oC. To measure TOC, there is a need to invest in a 

total inorganic carbon (TIC) removal device to give a more accurate measurement. To produce reliable 

results, manufacturers of TOC analyzers occasionally have to specify TIC limits required in samples. 

This poses a challenge when measuring low levels of TOC when high levels of TIC are present in 

water because it can lead to over or under-reporting of TOC. Accurate prediction of TOC using 

machine learning techniques using easily measurable water quality parameters can help address this 

challenge. 

Several researchers have explored the use of different ML techniques in predicting TOC in natural 

streams. The researchers in [8–10] explored the application of Artificial Neural Network (ANN), 

kernel extreme machine learning, and extreme machine learning models with different activation 

functions to estimate TOC levels in rivers. It was found that Kernel-based extreme learning machine 

was more accurate tool to predict TOC concentration in river water than the other methods. Neural 

networks mimic the human brain by using neurons to solve regression problems. Alizadeh et al. [11] 

studied the use of ANN to model the relation between wireline logs and TOC content in source rocks. 

ANN gave more precise results compared to a method that uses porosity and resistivity logs in 

determining TOC content in source rocks. Asgari Nezhad et al. [12] used multilayer perceptron neural 

network (MLP) and Sequential Gaussian Simulation (SGS) for estimation and simulation of TOC 

geochemical parameters. According to their research, the MLP model was more accurate than the SGS 

model. Back Propagation Neural Network (BPNN) machine learning algorithm has also been used to 

predict TOC levels. It contains an input layer, a hidden layer, and an output layer. The processing units 

in one layer form a connection with those in another layer, whereas the processing units in the same 

layer do not form a connection [13]. It is one of the simplest of all the machine learning algorithms 

because it is easy to train and can be established quickly [13]. However, the main drawback of BPNN 
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is that it easily becomes stuck in local minima during optimization, which greatly reduces its reliability 

when predicting TOC [13]. 

To overcome the limitation of BPNN of low convergence rate and instability, some investigators 

explored the use of support vector machines (SVM) to predict TOC. SVM is a supervised learning tool 

used for classification and regression tasks. It uses mathematical relations to determine the optimal 

hyperplane that separates data points of different classes using maximum margin technique [13]. Tan 

et al. [14] investigated the use of SVM regression for TOC content prediction from wireline logs in 

organic shale. Their study revealed that SVM technology is a powerful tool for TOC prediction and is 

more effective and applicable than a single empirical model, ΔlogR, and some network methods. A 

study carried out to determine TOC using SVM and well logs showed similar results [15]. 

Bolandi et al. [16] also concluded that SVM is better than ANN in predicting TOC while analyzing 

the organic richness of source rocks [17]. Rui et al. [18] studied TOC content prediction based on SVM 

with particle swarm optimization. The SVM method was more accurate in the prediction of TOC 

compared to ΔlogR and multilayer perceptron based on the R2. SVM have been shown to obtain a 

better prediction results for low-dimensional data comprising a small number of samples [13]. 

However, when the input data is noisy and large its efficiency is reduced [19]. On the other hand, SVM 

does not have a feature abstraction capability like multi-hidden-layer neural networks, resulting in a 

weaker prediction effect on engineering problems with certain ambiguities such as well logging 

evaluation [13]. 

One dimensional convolutional neural network (1D-CNN) is a powerful regression tool because 

it can extract patterns from sequential data inputs and reduce noise through its convolutional layer [20]. 

Asante-Okyere et al. [21] developed a CNN model for TOC prediction based on mineralogy and 

geophysical well log data. In the study, the CNN model based on mineralogical data logs had better 

accuracy than those using geophysical well logs with R2 of 0.86 and 0.748, respectively. This means 

that the choice of log input data into the CNN models affects the accuracy of the results. In another 

study, while conducting multiple linear regression for predicting BOD in river water, it was also noted 

that the choice of input variables affects the accuracy of the model during regression [22]. 

Random forest (RF) is a classic algorithm derived from decision tree theory and ensemble 

learning theory that contains a collection of decision trees. There is no relationship between each 

decision tree; therefore, each tree is independently modeled. Emphasis is placed on the randomness 

[23], and when modeling, samples are picked from the training set at random during each training 

iteration [23]. Because they exert the strength of ensemble learning through random means, RF 

methods have a high prediction accuracy and a strong generalization ability [24]. They can also handle 

large amounts of data in training datasets by building more decision tree models, and they do not 

require data normalization and are adaptable to data with unbalanced distributions [13]. Sun et al. [17] 

compared the use of RF, SVM and XGBoost to predict TOC Content in Organic-rich shale and found 

that RF had improved accuracy over SVM and XGBoost techniques. 

These ML techniques have different benefits and drawbacks that depend on their applications. 

Their development and use in natural rivers and streams need to be assessed. In this study, we present 

models for predicting TOC in Duwamish River water that use RF, 1D-CNN, and MLP machine 

learning algorithms. These three algorithms were chosen because each have their own strengths to 

handle the kind of dataset available for this study. RF is robust to noise and is less sensitive to outliers 

in the dataset. It also has feature importance analysis that evaluates the parameters that matter most in 

the regression task. 1D-CNN is efficient at local pattern detection, and captures features like trends, 

spikes, and periodicity using filters. MLP, on other hand, is a good baseline model that is simple to 

implement. It is good as a benchmarking algorithm to analyze and evaluate neural networks. We 
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compare the accuracy and efficiency of the three algorithms in predicting TOC. The information herein 

provides an important foundation for the development of natural stream TOC prediction models using 

ML. 

In this study, we aim to (i) develop predictive tools using RF, 1D-CNN, and MLP machine 

learning techniques for measuring TOC; (ii) assess the accuracy of RF, 1D-CNN, and MLP in 

predicting TOC; and (iii) assess the efficiency of RF, ID-CNN, and MLP in predicting TOC. The water 

quality parameter logs were taken from Duwamish River in Puget Sound along the northwestern coast 

of the U.S. state of Washington. There have been limited studies on the development of TOC prediction 

models using ML in natural streams. 

2. Materials and methods 

2.1. Study area and dataset description 

The dataset used for this study contained water quality parameters analyzed continuously at three 

sampling locations in the Duwamish River basin, including South Park Bridge, Harbor Island Marina, 

and East Waterway in the Puget Sound, USA. The three locations were designated in the dataset as 

LTMU03, LTKE03, and HNFD01, respectively. The three were chosen out of 191 sample locations 

for the analysis because they had the most complete datasets. The dataset contained water quality 

parameter logs collected and updated continuously from 21st October 1965 up to 20th March 2023. A 

sample preview of seven columns and the corresponding first five rows of the dataset is shown in 

Table 1. 

Table 1. A preview of the dataset (source: https://catalog.data.gov/dataset/water-quality). 

Collection date and time Depth (m) Locator Parameter Value Units Analysis method 

9/21/2015 10:29 54.2 JSUR01 Temperature 13 deg C CTD 

6/17/2015 10:43 1 NSAJ02 Silica 0.951 mg/L Whitledge 1981 

6/7/2016 10:13 178 LSNT01 Light Intensity (PAR) 0 umol/sm2 CTD  

8/15/2016 13:22 1.5 LTUM03 Salinity 17.9 PSS SM2520-B 

5/18/2015 9:22 196 KSBP01 Chlorophyll, Field 0.75 ug/L CTD 

From Table 1, the locator is a feature that assigns a distinctive identification of the area and 

particular locations where the samples are drawn from. The total number of unique locators are 191. 

The parameter column contains a total of 57 quality parameters that were measured at different 

locations, as per the standard procedures shown in the analysis methods column. 

2.2. Dataset size suitability and model validation 

Random Forest, MLP, and 1D-CNN models were validated using learning curve analysis and k-

fold cross-validation to assess their predictive stability and to determine the sufficiency of the dataset 

size for the regression task. Learning curves were generated by progressively increasing the training 

data from 10% to 100% of the dataset and obtaining the corresponding training and validation R2 

values. For this analysis, a 5-fold cross-validation procedure was applied. The dataset was partitioned 

into five equal subsets, with each fold serving once as the validation set, while the remaining folds 

were used for training. For each fold, the R2, mean squared error (MSE), and mean absolute error 

(MAE) were computed, and their mean values and standard deviation reported to represent each model 

performance. 

https://catalog.data.gov/dataset/water-quality
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2.3. Data preprocessing 

The variables in the parameter column were pivoted and filtered into their respective columns 

using the collect date, depth, and locator groups. They were then filled with their respective values in 

the ‘Value’ column. Where there was more than one value at a cell intersection, the mean was 

evaluated and filled up. The distribution of the parameter values in the 191 sample locations was 

analyzed to determine the locations that had the most sample collection campaigns with the least 

number of missing data points. The missing data points were filled using the k- nearest neighbors 

imputation algorithm. The common outliers among the parameters were identified and removed from 

the dataset using elliptic envelope method with a 95% confidence level. 

The Pearson correlation coefficient, r, was used to evaluate the coefficient of association between 

the parameters with TOC in the dataset. The guidelines given by Schober and colleagues was used to 

determine the direction and strength of the linear relationship [25]. The parameters that depicted 

moderate to strong positive or negative correlation was used for the regression task. 

For statistical analysis, and to better understand how the parameters were affected by the seasons, 

the data was split into the dry and wet season category, as per the dates illustrated in Figure 1. 

 

Figure 1. Dry and wet seasons in Seattle: https://weatherspark.com/y/913/Average-

Weather-in-Seattle-Washington-United-States-Year-Round. 

This shows the distinction between the dry and wet seasons and chance of precipitation 

occurrence throughout the year at the sampling location. From Figure 1, a wet season is from mid-

October to April, and November is the wettest month (whereas the dry season is from May to mid-

October), while August is the driest month. 

Analysis of Variance (ANOVA) was used to evaluate the level of significance of the mean values 

of the parameters based on the dry and the wet seasons. The permutations test was also used to test the 

significance levels of the parameters at the two seasons. The Pearson correlation coefficient between 

the parameters in the two seasons was also analyzed for comparison. 

2.4. Random forest regression 

Random forest regression algorithm was used to predict TOC using water quality parameters that 

had moderate to strong negative or positive Pearson correlation coefficient, r of greater than 0.36. The 

data split for the ML algorithm was kept at 80% and 20% for the training and testing set, respectively. 

https://weatherspark.com/y/913/Average-Weather-in-Seattle-Washington-United-States-Year-Round
https://weatherspark.com/y/913/Average-Weather-in-Seattle-Washington-United-States-Year-Round
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The sample sets were created from the random sample using the bootstrap ensemble aggregation 

method. The Gini impurity factor was used to rank the features and better understand variable 

contribution to the regression algorithm. The MAE, mean squared error (MSE), and the R2 were used 

to determine the model accuracy. 

The depth and the number of decision trees were optimized to achieve the highest prediction 

accuracy of the regression model. The depth and the number of decision trees were varied through 

permutations using python programming algorithm on the values shown in Table 2. 

Table 2. Decision tree hyperparameter variation. 

Hyperparameters Variation levels 

Number of decision Trees 50 100 150 200 250 300 350 

Depth of decision trees 5 10 15 20 25 30 35 

For the RF model, hyperparameters, including the number of estimators (number of decision trees) 

and maximum tree depth, were optimized using Grid Search in the sklearn learn library in python. The 

algorithm would first pick the number of decision trees and the depth as varied and then run the 

regression task. It would then evaluate the accuracy of the pair using performance metrics defined. 

Finally, after running all the pairs, the algorithm would pick the best performing pair for the regression 

task. The model parameters used for RF algorithm are those that exhibited good correlation with TOC. 

The parameters include depth, light transmissivity, dissolved organic carbon, date, total suspended 

solids, silica content, orthophosphate phosphorous content, salinity, and density. 

2.5. 1D-CNN regression algorithm 

As a basis of precision comparison between ML algorithms, other deep learning models (1D-

CNN and MLP) were used to predict TOC using the same water quality parameters used in the RF 

algorithm. 1D-CNN contains the input layer, the convolution layer, the pooling layer, the flatten layer, 

the fully connected (dense) layer, and the output layer. 

Nine input water quality parameters, including DOC, sampling date, depth, density, silica, 

orthophosphate phosphorous, light transmissivity, date, and total suspended solids, were used in the 

1D-CNN regression task. The model parameters were selected on the basis of their correlation strength 

with TOC. The number of convolutional layers were varied from 1 to 3 to determine the optimal 

number of layers required to yield higher accuracy in TOC prediction. The number of filters and the 

kernel size hyperparameters in the convolutional layer were also optimized. The MSE, MAE, and the 

R2 were used as performance metrics. The number of filters were varied from a minimum value of 32 

to a maximum value of 512 with a step interval of 32. The values of kernel sizes were 3, 5, and 7. The 

Rectified linear unit was used as the activation function in the convolutional layer to introduce the 

property of nonlinearity and reduce the dimensionality of the feature maps produced by the 

convolutional layer. 

The max pooling method was used to select the maximum value from each patch of the feature 

map. The data was then fed into the flattened layer to convert into a one-dimensional array ready to be 

fed into the fully connected (dense) layer. The number of dense layers and neurons in each layer were 

optimized as follows: The number of dense layers were varied from 1 to 10, and the neurons in each 

layer varied from a minimum value of 32 to a maximum of 512 using a step interval of 32. There was 

only one output layer that was the predicted TOC from the parameters fed at the input. The dataset was 

set into a validation split of 20% placed at random. In this study, the number of epochs during the deep 

learning process was also optimized. This was done by setting the maximum number of epochs to 100, 



270 
 

Applied Computing and Intelligence                                                                 Volume 5, Issue 2, 264–285. 

 

using the early stopping criterion, and setting the patience to 5. Minimum validation loss at every 

epoch was evaluated and iterated until the minimum values were achieved. The optimal number of 

passes through the training dataset that leads to the best performance of the model on unseen data was 

evaluated and optimized using the validation dataset. 

2.6. The multilayer perceptron regression algorithm 

Multilayer perceptron regression was used to train the dataset to obtain a desired output in the 

regression operation. It contains an input layer, hidden layers, and the output layer. In this study, the 

input into the model was the water quality parameters similar to those used in the RF and the 1D-CNN 

algorithms, and the output was the predicted TOC. The nine neurons from the input layer were fed into 

the hidden layer where the activation function (ReLU) was applied. The number of hidden layers and 

the neurons in each layer were optimized using the MAE as the performance metric for the model. The 

number of training epochs were also optimized using the early-stopping criterion while setting the 

patience to 5. 

3. Results and discussion 

3.1. Dataset preprocessing 

The dataset was analyzed for completeness for the three sampling locations, and the results are 

shown in Table 3. The parameters with less than ten datapoints of the possible 1187 were excluded 

from the regression task while those with more than 74% data completeness and with moderate to 

strong negative or positive correlation coefficient, r of greater than 0.36 with TOC were used as input 

regression parameters. 

Table 3. Dataset summary. 

Parameter Number of data points Percentage missing datapoints 

Depth 1187 0 

Total Organic Carbon 1187 0 

Density 1187 0 

Dissolved Organic 1185 0.16 

Light Transmittance 1143 3.70 

Orthophosphate Phosphorus 871 26.62 

Silica 1181 0.50 

TSS 1177 0.84 

Salinity 1187 0 

Date and Time 1187 0 

Orthophosphate phosphorus had the highest number of missing data points at 26.62%. The rest 

of the parameters had less than 4% out of the possible 1187 data missing. The missing data points were 

imputed using k-nearest neighbors imputation algorithm from the sklearn impute library in python by 

setting the value of k as 5. Common outliers among the parameters were identified using elliptic 

envelop method with a 95% confidence level. Forty-two outliers were identified and removed from 

the dataset, resulting in 1145 complete sets of data. 
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3.2. Dataset size suitability and model validation 

To analyze the suitablity of the dataset size for regression task using the three models, learning 

curves and k-fold cross validation analysis were conducted. Figure 2 shows the learning curve for RF, 

1D-CNN, and MLP. 

 

Figure 2. Learning curves for Random Forest, 1D-CNN, and MLP models showing stable 

convergence of training and validation. 

From Figure 2, the learning curves for RF, 1D-CNN, and MLP models demonstrate that the 

dataset size used was large enough to enable stable model training and meaningful generalization. For 

RF curves validation R2 values rises steadily converging near 0.81 at full training data usage while 

maintaining a high training R2 of about 0.96. This implies that RF has a strong predictive ability with 

marginal overfitting. The 1D-CNN demonstrated the most balanced performance, with training and 

validation R2 values ranging between 0.78 and 0.82 at higher data fractions, indicating that the model 

effectively captured nonlinear dependencies without significant variance errors. The MLP curve 

showed validation R2 gradually approached the training R2 as the training fraction increased, 

stabilizing at 0.6 with a training R2 of 0.9, implying adequate learning capacity. Collectively, the 

consistent convergence of validation scores across all models as the training fraction increased 

suggested that the dataset size of 1145 data points was adequate for model generalization, with only 

minor gains expected from additional data. This agreed with the works of the researchers in [26] who 

suggested that for machine learning models, the minimum dataset size should be >1000 for better 

accuracy. Among the three models, RF and 1D-CNN displayed superior generalization compared to 

the MLP, underscoring their suitability for capturing complex relationships within the dataset. Table 4 

shows the mean values of the performance metrics of the three models using 5-fold cross validation 

analysis to assess the model’s stability. 

Table 4. Mean performance metrics of 5-fold cross validation analysis for RF, 1D-CNN, and MLP. 

Performance Metric RF 1D-CNN MLP 

Test R2 0.771 ± 0.031 0.736 ± 0.036 0.757 ± 0.039 

MSE 0.096 ± 0.020 0.109 ± 0.022 0.101 ± 0.022 

MAE 0.200 ± 0.017 0.226 ± 0.019 0.216 ± 0.018 

The 5-fold cross-validation analysis provided a robust measure of model stability. The RF model 

achieved the highest predictive performance overall due to its ability to handle nonlinear relationships 

and feature interactions efficiently without requiring extensive parameter tuning. From the test R2 

values, the MLP model slightly outperformed the 1D-CNN, which could be attributed to the relatively 

small and tabular nature of the dataset, where fully connected networks tended to generalize more 

effectively than convolutional architectures that were optimized for sequential or spatially correlated 
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data. The low standard deviations (< 0.04) across folds indicated stable performance and minimal 

sensitivity to data partitioning, thus indicating the adequacy and representativeness of the dataset. 

Collectively, the convergence of the learning curves and the consistency of cross-validation results 

suggested that the dataset size used was robust for model training and was reliable with limited benefits 

expected from additional data and could be used effectively for predictions of total organic carbon 

concentrations in river water. 

3.3. Parametric correlation 

The strength of the relationships between TOC and other water parameters were determined. The 

scatter plots showing parameters with positive and negative correlation with TOC are presented in 

Figures 3 and 4, respectively, and the pair-wise correlation matrix is shown in Table 5. The scatter plot 

of TOC with DOC shows that the data points were closely clustered around the regression line whose 

trend indicated a positive linear relationship. The correlation matrix showed that the value of r for the 

TOC- DOC pair was 0.852, indicating a strong positive linear relationship. The strong correlation was 

expected because DOC is the soluble portion of TOC. The other parameters that had a positive linear 

correlation with TOC were silica and total suspended solids, and those exhibiting negative linear 

correlation were orthophosphate phosphorus, density, light transmissivity, salinity, and depth. The 

relationships between TOC and these water parameters were linear but exhibited a significant amount 

of scatter. The directionality and strength of correlation was supported by the Pearson correlation 

coefficients in Table 5. Based on the guidelines of Schober et al., [25] all the water parameters were 

moderately to strongly correlated with TOC (|r|>0.40). The exceptions were depth and total suspended 

solids, having 0.36<|r|<0.40, which was within the window of a linear relationship [27]. Parametric 

correlations suggested that a linear model may have been used to fit the data to TOC. 

 

Figure 3. Scatter plots of TOC versus water quality parameters with positive linear 

correlation: DOC, silica, and Total suspended solids. 
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Figure 4. Scatter plots of TOC versus water quality parameters with a negative linear 

correlation: Orthophosphate phosphorus, density, light transmissivity, salinity, and depth. 

Table 5. Pearson correlation matrix. 

Parameter Depth Density DOC 

Light 

Transmissivity 

Orthophosphate 

Phosphorus Silica TOC TSS Salinity Date 

Depth 1.000          

Density 0.505 1.000         

DOC -0.311 -0.429 1.000        

Light 

Transmissivity 
0.444 0.558 -0.483 1.000 

      
Orthophosphate 

Phosphorus 0.499 0.799 -0.351 0.550 1.000 
     

Silica -0.534 -0.850 0.455 -0.574 -0.736 1.000     

TOC -0.370 -0.456 0.852 -0.553 -0.423 0.472 1.000    

TSS -0.114 -0.296 0.260 -0.554 -0.257 0.242 0.361 1.000   

Salinity 0.534 0.977 -0.465 0.601 0.814 -0.917 -0.492 -0.306 1.000  

Date 0.066 -0.006 -0.483 0.278 -0.065 -0.094 -0.483 -0.106 0.045 1.000 

Time may influence water quality parameters through seasonal changes in precipitation and 

temperature. The influence of time on water quality parameters was examined graphically through 

time series analyses. The various dates and time were converted into equivalent time stamps to enable 

the scatter plots to be plotted over the time scale. Figure 5 shows time series plots for orthophosphate, 

silica, density, and salinity taken from the year 2005 to the year 2022 in the river. The four parameters 

showed the strongest variation with time (Supporting Figure 1). In Figure 5, orthophosphate 

phosphorus had a clear periodic pattern with consistent peaks and troughs. This meant that the levels 

of orthophosphate phosphorus were influenced by seasonal changes. Silica levels had similar patterns 

to those of orthophosphate phosphorus but comparable periodicity. Density exhibited sinusoidal trend 

in the upper range values similar to that of salinity. This was in agreement with the strong correlation 

between density and salinity in Table 5 and the work of others [28]. Seasonal or periodic changes of 
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orthophosphate phosphorus, silica, depth, and salinity with time did not seem to significantly influence 

TOC. The target variable (TOC) did not portray a periodic trend, whereas the input variables exhibited 

periodic and non-periodic trends. 

 
Figure 5. Time series scatter plots for parameters with periodic pattern: Orthophosphate 

phosphorous, silica, density, and salinity. 

Figure 6 illustrate the parameters that had no regular periodic oscillations. Light transmissivity 

exhibited an irregular trend with no cyclic pattern. This meant that seasonal changes through the years 

do not affect light transmissivity in the river water, and the changes in the levels of light transmissivity 

are influenced by factors other than seasonal variations. This is in agreement with findings by Nicolaus 

et al. [29]. 
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Figure 6. Time series scatter plots for parameters without nonperiodic pattern: Light 

transmissivity, dissolved organic carbon, total organic carbon, and total suspended solids. 

3.4. Statistical comparisons of the dry and the wet season 

Since the data set had parameters that showed periodicity in their values, a comparison was carried 

out for parameter values for the dry and wet seasons. A split of the dataset based on the wet and dry 

seasons resulted in datasets containing a total of 666 and 479 datapoints, respectively. A comparison 

of the Pearson correlation coefficient for the two seasons is shown in Figure 7. The Pearson correlation 

coefficient for the dry and wet season between water quality parameters and TOC were higher in the 

wet season than those in the dry season. The only exception was TSS. Therefore, the levels of 
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precipitation impacted the correlation of TOC with the water quality parameters. This agreed with the 

findings of Correll et al. [30]. 

 
Figure 7. Pearson correlation coefficients between water quality parameters and TOC for 

the wet and dry seasons. 

Analysis of variance (ANOVA) on the water quality parameters from the three sampling sites on 

Duwamish River for the dry and wet seasons was carried out. This is summarized in Table 6. The p-

value indicated the probability of observing a difference in the means of the data during the wet and 

dry seasons, respectively, assuming that there was no true difference between the two seasons. At 

a 95% confidence level, density, DOC, orthophosphate phosphorus, silica, and salinity had significant 

differences in their mean values for the two seasons (dry and wet). This agreed with the findings of 

the time-series analysis that density, orthophosphate phosphorus, silica, and salinity showed periodic 

variations in their value. It was possible that seasonal variations in DOC variables were masked by 

their scatter. Light transmissivity, TOC, and TSS did not have a significant difference between the 

mean values of the two seasons. RF, 1D-CNN, and MLP machine learning algorithms were used for 

regression analysis of the relationship between TOC and other water quality parameters to evaluate 

their performance in predicting TOC values for the mixture of periodic and non-periodic data. 

Table 6. Variance, mean, and p-values for the dry and wet seasons. 

Parameter Units Mean Variance p-Value 

  Dry Wet Dry Wet  

1. Density Kg/m3 1018.571 1017.721 30.488 51.771 0.028 

2. Dissolved Organic Carbon mg/L 1.529 1.681 0.274 0.422 0.013 

3. Light Transmissivity % Light 63.250 63.797 279.518 447.535 0.640 

4. Orthophosphate Phosphorus mg/L 0.046 0.057 0.000 0.000 3.67E-16 

5. Silica mg/L 5.032 6.756 11.680 14.969 6.33E-15 

6. Total Organic Carbon mg/L 1.798 1.808 0.366 0.645 0.817 

7. Total Suspended Solids mg/L 5.984 6.347 72.069 173.072 0.591 

8. Salinity PSS 24.141 22.350 51.828 87.435 3.79E-04 
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3.5. RF regression 

RF regression was used to develop a predictive model of TOC from the other water quality 

parameters. RF hyperparameter values shown in Table 2 were optimized using a python programming 

machine learning algorithm, and the results are shown in Table 7. The optimal depth and number of 

decision trees were 15 and 150 for the dry season, respectively, and 35 and 50 for the wet season, 

respectively. When the two seasons were combined, the optimal depth and number of decision trees 

were 20 and 150, respectively. The R2 was highest during the wet season at 0.788 and lowest during 

the dry season at 0.685. Higher accuracy during the wet season could be attributed to the higher 

Pearson correlation coefficient between TOC and water parameters for seven of nine parameters during 

the wet season compared to those of the dry season (Figure 7). When the data was taken for the 

sampling locations, the coefficient of determination, R2, became 0.732. The scatter plot for observed 

versus predicted values of the RF regression model is shown in Figure 8. 

Table 7. Random Forest regression results for dry season, wet season, and both seasons combined. 

Parameter Dry season Wet season Seasons combined 

Optimal depth of decision tree 15 35 20 

Optimal number of decision trees 150 50 150 

Mean squared Error 0.082 0.083 0.111 

Root Mean Squared Error 0.286 0.287 0.334 

Coefficient of Determination (R2) 0.685 0.788 0.732 

 

Figure 8. Scatter plots for predicted versus observed values for the RF TOC regression 

model: Considering DOC, light transmissivity, date, depth, silica, orthophosphate 

phosphorus, salinity, and density as input parameters. 

Sampling date, density, light transmissivity, and total suspended solids were considerably cost 

effective and easy measurements to take. When these water quality parameters were used for the 

prediction of TOC, the coefficient of determination, R2, changed from 0.732 to 0.600. The scatter plot 

is presented in Figure 9. Moreover, the more input variables there were, the better the model fit. 

However, in a setting where not all the water parameters were available, the model could be used to 

provide a reasonable estimate of TOC values. 
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Figure 9. Scatter plots for predicted versus observed values for the RF TOC regression 

model considering date, density, light transmissivity, and total suspended solids as input 

parameters. 

Gini importance was used to measure the potential of the variables in their contribution to the RF 

regression model. Table 8 shows the variables together with the sampling locations and their respective 

Gini importance. As expected, DOC accounted for the highest contributor to the prediction of TOC 

because it had the highest Gini factor of 0.779 in the RF regression algorithm. This agreed with scatter 

plots of TOC and DOC as well as the pair-wise Pearson correlation coefficient for the two water quality 

parameters. Interestingly, the three sample locations in the river had the least contribution to the 

prediction of TOC at < 0.2%. This meant that sampling locations in Duwamish River had the least 

effect on TOC prediction using the RF regression model. In fact, when the sample locations were 

excluded from the RF algorithm, the coefficient of determination (R2) increased from 0.710 to 0.732. 

Table 8. Gini importance factors. 

Feature Gini Importance 

All Features Excluding sample locations Selected features 

Dissolved Organic Carbon 0.779 0.774 - 

Light Transmissivity 0.038 0.038 0.133 

Date 0.037 0.040 0.465 

Total suspended solids 0.029 0.031 0.094 

Depth 0.027 0.028 - 

Silica 0.025 0.027 - 

Orthophosphate Phosphorous 0.025 0.026 - 

Salinity 0.018 0.019 - 

Density 0.016 0.016 0.309 

Location LTKE03 0.002 - - 

Location LTUM03 0.002 - - 

Location HFND01 0.002 - - 

When sample location was excluded, DOC was significant in the prediction of TOC (Gini 

importance of 0.774) followed by the date. In the absence of sample location, the other water quality 

parameters had comparable Gini importance values. When date, density, light transmissivity, and total 

suspended solids were used as logs, sampling date had the highest Gini importance factor of 0.465. 

Since these four parameters were easily measurable, they could be used as a prediction estimate for 
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TOC prediction because they gave a coefficient of determination of 0.600. When necessary, and for 

higher accuracy, all seven water quality parameters could be used to predict TOC. 

3.6. One-dimensional convolutional neural network regression 

1D-CNN was used to predict TOC using the same input parameters as those used in RF algorithm. 

The input parameters included; DOC, light transmissivity, date, TSS, depth, silica, orthophosphate 

phosphorous, salinity, and density. Table 9 shows the optimization results for 1D-CNN regression, 

which includes the number of convolutional layers and dense layers optimized. The test loss measures 

the difference between the predicted values and the true values. It is aggregated over all the samples 

in the test set to give the overall results. In this case, it was determined using the mean squared value. 

The1D-CNN prediction of TOC had a test loss, MAE, MSE, and R2 of 0.114 mg/L, 0.244 mg/L, 0.119 

mg/L, and 0.714, respectively. The number of convolutional layers and dense layers were 1 and 4, 

respectively. The number of neurons varied in each layer, as shown in Table 9. The scatter plot showing 

predicted versus observed values for 1D-CNN is shown in Figure 10. 

Table 9. Optimization results for 1D-CNN 

Parameter Value 

Test loss 0.114  

Mean absolute error, MAE (mg/L) 0.244 

Mean squared error, MSE (mg/L) 0.119 

Coefficient of determination, R2 0.714 

Number of CNN layers 1 

Number of filters in CNN 128 

Kernel size in CNN 5 

Number of dense layers  4 

Neurons in dense layer 1 256 

Neurons in dense layer 2 64 

Neurons in dense layer 3 448 

Neurons in dense layer 4 512 

Number of epochs 16 

 
 

Figure 10. Scatter plots for predicted versus observed values for TOC prediction using 1D-CNN. 
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Figure 11 is a training and validation loss curve used to visualize how the number epochs affect 

the accuracy of TOC prediction using 1D-CNN architecture. The loss curve shows a rapid decrease in 

training and validation loss within the first five epochs. The model converged quickly within the five 

epochs, meaning that the model learned effectively. The two curves remained very close, indicating 

good generalization and that there was no major overfitting. Both losses were low and stable, meaning 

that underfitting did not arise. The optimal number of epochs for 1D-CNN were stopped at 16 to 

monitor the performance and prevent overfitting or underfitting during the training process. From the 

loss-curves, the 1D-CNN model learned quickly and had good prediction of the true values of TOC. 

 
Figure 11. Training and validation loss curve for 1D-CNN. 

3.7. Multilayer perceptron regression 

A MLP regression algorithm was created to predict TOC using the seven water quality parameters 

mentioned in the previous sections. Table 10 shows the optimization results of the MLP regression 

algorithm. The test loss, MAE, MSE, and R2 for the MLP regression algorithm were 0.151mg/L, 0.270 

mg/L, 0.150 mg/L, and 0.638, respectively. The number of hidden layers were optimized to 5 with the 

number of neurons in each layer, as shown in Table 10. The scatter plot for the predicted versus the 

observed value is shown in Figure 12. During the training of the dataset, the epochs stabilized at 21 

when the training loss was 0.155, as shown in Figure 13. 

Table 10. Optimization results for MLP for TOC prediction. 

Parameter Value 

Test loss 0.151 

Mean absolute error, MAE (mg/L) 0.270 

Mean Squared Error, MSE (mg/L) 0.150 

Coefficient of determination, R2 0.638 

Number of hidden layers 5 

Neurons in hidden layer 1 64 

Neurons in hidden layer 2 96 

Neurons in hidden layer 3 288 

Neurons in hidden layer 4 512 

Neurons in hidden layer 5 384 

Number of epochs 21 
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Figure 12. Scatter plots for predicted versus observed values for TOC prediction using MLP. 

 

Figure 13. Training and validation loss curve for MLP. 

An assessment of the predictive MLP model was done and compared to that of 1D-CNN. 

Figure 13 shows training and validation loss curve for the MLP regression algorithm. It had a similar 

trend to that of 1D-CNN. The training and validation loss dropped sharply within the first three epochs. 

The validation loss curve stabilized at epoch 5, but that of 1D-CNN fluctuated slightly at around 

epoch 12. This indicated mild overfitting. The training loss curve was more stable and consistently 

lower than the validation curve after 5 epochs. Both losses reached a stable low value and, thus, 

underfitting did not present a challenge for this algorithm. Both MLP and 1D-CNN provided good 

prediction and fast learning in modeling the data but ran the risk of overfitting [31]. They also lacked 

good interpretability, making it hard to extract meaningful insight from the filters or feature maps [20]. 

1D-CNN requires large amount of labeled data for effective training, especially when the architecture 

is deep or the kernel size is large and, therefore, requires more computational resources [32]. 

3.8. Comparison of model performance in TOC prediction 

The performance of RF, 1D-CNN, and MLP in predicting TOC from the nine water quality 

parameters was compared. Table 11 shows a comparison of the three algorithms in predicting TOC. 

From the results, the RF algorithm had the highest accuracy for TOC prediction with a test R2 of 0.732 
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and a trained R2 of 0.969, indicating a strong learning capacity with minimal overfitting. In comparison, 

1D-CNN had a test R2 of 0.714 and a trained R2 of 0.801, and MLP had a test R2 of 0.638 and trained 

R2 of 0.808, indicating a slightly lower training fit. The RF test R2 of 0.732 was within the range as 

those in [33] where ML models in predicting TOC in river water were used. The accuracy of these 

models depends on the target variable and contextual features used [13]. These studies and the cross-

validation results indicated that the predictive accuracy as wis realistic for site-specific monitoring 

tasks, and that the model errors (MAE/MSE) remained within practical limits for trend detection and 

decision support. RF provided the best fit for data and best captured variance in the data. It also had 

the least MAE of 0.120 mg/L compared to that of 1D-CNN and MLP, meaning that RF gave the most 

precise predictions in the regression process because the error between the observed and predicted 

values was the least. The MSE of 1D-CNN was the lowest (0.119 mg/L) among the three models, 

meaning that 1D-CNN performed better in minimizing large and small errors. Therefore, in terms of 

performance metrics, RF would be chosen over the two deep learning approaches (CNN and MLP) for 

TOC prediction in river water. 

Table 11. Performance comparison of RF, 1D-CNN, and MLP regression algorithm for 

TOC prediction. 

Model Test R2 Train R2 MAE (mg/L) MSE (mg/L) 

RF 0.732 0.969 0.120 0.286 

1D-CNN 0.714 0.801 0.244 0.119 

MLP 0.638 0.808 0.270 0.150 

Deep learning is best suited for handling highly complex relationships in data and requires more 

computational resources and time [34]. It also requires data normalization, which can lead to loss of 

important data features in regression tasks. The RF algorithm, on the other hand, is easier to interpret 

and understand because it is possible to track down where the decisions are made during the regression 

task [23]. It is best suited to handle small datasets even with categorical features. RF can handle 

datasets without necessarily having to normalize or impute data and maintains accuracy for many 

multivariate regression tasks [35]. In this study, it was able to accurately handle input data containing 

parameters that exhibited both periodic and non-periodic time series trends without normalization. 

When the two deep learning algorithms were compared, 1D-CNN had a higher R2 value and lower 

MSE and MAE values than the MLP regression algorithm in TOC prediction, indicating it was better 

at predicting the true value of TOC. The convolutional layer, which was not there in MLP, had the 

ability to capture spatial features and patterns in the dataset [20]. It is difficult to handle data sets that 

contain varying features and trends with MLP because it lacks a convolutional layer. Among the three 

models evaluated, the RF algorithm demonstrated superior predictive performance compared to the 

deep learning approaches (MLP and 1D-CNN). This could be attributed to the nature of the dataset, 

which was tabular and moderately sized, making RF particularly effective at capturing complex 

nonlinear relationships. RF’s ensemble-based architecture aggregated multiple decision trees, thereby 

reducing model variance and enhancing robustness against overfitting. In contrast, the MLP and 1D-

CNN models, although capable of learning intricate feature representations, were more sensitive to 

data distribution and architecture configuration. The consistency of RF’s performance was further 

confirmed through five-fold cross-validation, where it achieved the highest mean R2 (0.771 ± 0.031) 

and the lowest error metrics (standard deviation) among the models. These results demonstrated RF’s 

superior ability to generalize across data folds, demonstrating its reliability for regression tasks on 

moderately sized environmental datasets. 
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4. Conclusions 

In this study, prediction of TOC through measurements of depth, density, DOC, light 

transmissivity, orthophosphate phosphorus, silica, TSS, salinity, and date was carried out using the RF 

algorithm, 1D-CNN, and MLP deep learning algorithms. Density, DOC, light transmissivity, 

orthophosphate phosphorus, silica, TSS, and salinity had a moderate to strong correlation with TOC. 

Seasonality, not location, influenced all the water quality parameters except for light transmissivity, 

TOC, and TSS. The RF regression algorithm had the highest prediction capability compared to the 

deep learning models. The RF regression model was robust in withstanding time series variations in 

some water quality parameters. Among the two deep learning models, 1D-CNN had better predictive 

ability than MLP. This was attributed to the presence of the convolutional layer, which can handle 

complex patterns in the dataset. RF is a powerful robust machine learning regression tool that can be 

applied in predicting TOC in the river water by carefully picking the input parameters. It can withstand 

parametric variations and is strong enough to handle noise in the datasets. This superior performance 

was further validated through five-fold cross-validation, which confirmed the model’s consistency and 

minimized bias across data splits. Additionally, learning curve analysis indicated that the available 

dataset size was sufficient for model training and that the RF model achieved stable generalization 

without overfitting. The findings here provide novel predictive tools that would be useful in low 

resource settings or for resource planning when predicting TOC from other water quality parameters. 

In the future, researchers could explore advanced gradient boosting frameworks such as XGBoost and 

LightGBM to further enhance prediction accuracy and computational efficiency. 
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