
An Event-based BSN Middleware that supports Seamless
Switching between Sensor Configurations

Christian Seeger, Alejandro Buchmann
DVS Group, TU Darmstadt, Germany
{cseeger,buchmann}@dvs.tu-

darmstadt.de

Kristof Van Laerhoven
ESS Group, TU Darmstadt, Germany

kristof@ess.tu-darmstadt.de

ABSTRACT

Recent advances in wearable sensors have surged in novel fit-
ness and preventive health care systems that measure step
counts, activity levels, and performed exercises with inertial
sensors, enabling users to monitor condition and day-to-day
lifestyle. This paper presents a middleware designed for a
smartphone unit to support health monitoring applications.
Its event-driven architecture enables modular system design
and seamless switching between sets of embedded sensors.
The strengths of the middleware are highlighted in a de-
ployed feasibility study where daily and gym activities are
recognized through an interchangeable set of wireless sen-
sors. The study demonstrates that the setup is suitable for
daily usage with minimal impact on the phone’s resources.

Categories and Subject Descriptors

D.2.11 [Software Architectures]: System architectures—
data abstraction, domain-specific architectures

General Terms

Design, Performance

Keywords

body sensor networks, middleware, event-based, smartphone,
fitness application

1. INTRODUCTION
The World Health Organization predicts that chronic dis-

eases will become the most expensive problem faced by cur-
rent health care systems and sees the integration of preven-
tion into health care as the main solution for this problem
[13]. A paradigm shift towards integrated, preventive health
care as well as equipping patients with information, motiva-
tion, and skills in prevention and self-management are de-
scribed as essential elements for solving this problem. As
body sensor network (BSN) systems are capable of continu-
ously monitoring a person’s physiological and physical state,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IHI’12, January 28–30, 2012, Miami, Florida, USA.
Copyright 2012 ACM 978-1-4503-0781-9/12/01 ...$10.00.

they form a promising tool that equips patients with the re-
quired information and motivation.

Many BSN-based projects in health care [5, 6] focus on
monitoring of a particular disease or set of physiological sig-
nals. They benefit from the independence from stationary
in-hospital observations, allowing patients to freely move
and live their daily life while being monitored over longer
times and under more realistic conditions. The authors of [3]
present the MobiHealth project which consists of a generic
BSN for health care as well as a generic mobile health ser-
vice platform, making a distinction between a basic set of
sensors and patient-specific ones such as blood glucose mon-
itors or ECG. The main focus of this work lays on the net-
work infrastructure among a patient’s BSN and health care
provider, with longer-term patient monitoring as a future
goal. In the Partnership for the Heart project [7], 710 pa-
tients with cardiac disorders were equipped with a station-
ary scale, ECG, SpO2, blood pressure sensors, a hip-worn
activity sensor as well as a PDA for transmitting the daily
measurements to a remote health care provider. Less hospi-
tal stays, an increased quality of life, and a faster reaction
to health changes are promising results of this study. The
system contained a fixed set of sensor and a relatively sparse
monitoring technique.

We argue in this paper that support for flexibly handling
sensor configurations is a significant feature for many BSN
applications. For a patient with a cardiac disorder for in-
stance, monitoring of blood pressure, ECG, and physical ac-
tivities would be preferred. As monitoring progresses, how-
ever, other data might become relevant, such as those from
additional respiration and blood oxygen saturation sensors
to observe a developing sleep apnea. In another scenario,
fitness users might be equipped with basic sensors for activ-
ity and heart rate monitoring to log the daily activity level
and calorie expenditure, while doing their cardio exercises,
additional measurements of respiration, blood oxygen satu-
ration, and ECG might be desired. Our proposal is a BSN
system that is designed to seamlessly handle changing sen-
sor configurations, so that introducing new sensors and new
sensor rules requires only minimal intervention.

Motivated by these scenarios, this paper presents a BSN
middleware that 1) is able to cope with interchanging sets
of sensors, 2) is straightforward to deploy, and 3) runs in-
terconnected devices that support day-long monitoring. An
event-based system design is combined with modules that
translate sensor data to events, to support adapting the
system’s functionality, extending the sensors set, and cope
seamlessly with changing sensors. The middleware is fur-

503

thermore designed to run on a smartphone, making use of
its connectedness, processing power, and user acceptance.

The advantages are demonstrated in a feasibility study,
implementing a fitness diary on top of the middleware. The
diary captures the user’s activities from a changing set of
wearable sensors, and monitors the user’s heart rate and en-
ergy expenditure, illustrating the base functionality needed
for a preventive health care application. Evaluations on real-
world deployments show that the event-based middleware
supports real-time classification of exercises, changing sets
of sensors, and that it can be used continuously without
recharging the phone’s or sensors’ batteries.

This paper is structured as follows: after presenting re-
lated work, we will discuss the demands on a generic BSN
architecture, especially for health care applications, and de-
scribe our design choices in Section 3. Detailed information
about the event-based architecture is given and the system
is compared to the requirements discussed before. Section 4
describes how the middleware can be used for a preventive
health care application. We developed a fitness diary that
monitors both the daily activities as well as very detailed
activity recognition of 16 gym exercises including repetition
count. Based on this case study, we evaluate the system’s
performance and feasibility in Section 5, after which conclu-
sions and a summary of our main results are made.

2. RELATED WORK
Event-based systems provide a loose coupling of event pro-

ducers and event consumers. Furthermore, they can cope
with a high amount of events, interpret them, and extract
meaningful information out of the events. Heterogeneity
among event producers and consumers is also supported as
well as real-time monitoring of events.

For health care applications, event-based systems have
been mainly presented in areas with a high amount of data.
Examples are intensive care solutions, real-time sleep analy-
sis, and solutions for establishing large health care networks.
All solutions benefit from the efficient data processing pro-
vided by event-based systems. In the following we describe
two examples.

Intensive care units are equipped with numerous devices
for monitoring a patient’s health parameters such as heart
rate, cardiac rhythm, blood pressure, and many others. Many
of them are stand-alone devices with individual alarming
systems. Once a patient suffers from a problem, many de-
vices might trigger an alarm according to the parameter they
monitor. Instead of alarming multiple problems, a single
meaningful event could ease and automate intensive care
procedures. The authors in [2] propose an event-based sys-
tem that combines the events from individual sensors. It
integrates in one place historical data, events, rules, and
data mining models. Since it is an event-based system it
is highly customizable. In addition to this, the system per-
forms data mining for identifying possible future risks (e.g.,
cardiac arrests).

Besides patient monitoring in intensive care units, the
authors of [11] propose an event-based middleware for pa-
tient monitoring outside health care facilities. They de-
scribe homecare environments as being dynamic and cus-
tomized to a patient’s particular situation. A homecare sys-
tem sends monitoring reports, and state changes to health
care providers and triggers alarms in case of emergencies.
By characterizing such a scenario as highly data-driven, the

authors chose an event-based system. The particular focus
of this work lays on enabling data security by adding dis-
semination control.

3. THE ARCHITECTURE
This section describes the architecture of our BSN ap-

proach consisting of a layered, event-driven middleware and
a smartphone as the aggregator device. First a discussion
about the requirements for generic BSN solution, especially
in the context of (preventive) health care applications, is
made. After listing the requirements for such an architec-
ture, our design decisions in response are motivated and de-
tails on the implementation of the system are presented.

3.1 Requirements
The examples sketched in the introduction have shown an

important requirement on BSN platforms: the network con-
figuration of BSNs can change over time and therefore the
system should be easy to adapt to new sensor configurations.
Those changes can occur over a long time (e.g., patients get-
ting additional chronic diseases, improved sensors becoming
available) or even within a short period of time (e.g., ad-
hoc connection to a scale). Many current BSN solutions like
the LifeShirt [9] are closed systems with a restricted set of
sensors. Adapting them to new requirements is expensive.
Since BSN solutions benefit from the advances in new body
sensors and the resulting services provided to a user or pa-
tient, they should be easy to adapt to new circumstances
(e.g., sensors, requirements). Therefore, adaptability, ex-
pendability and seamless handling of sensor configuration
changes are significant features of a BSN architecture.

We distinguish between two roles of BSN devices: sensor
and actuator devices for measurements and physical reac-
tions on one hand, and an aggregator device for collecting
sensor data and decision making on the other hand. Sen-
sors and actuators provide events in form of measurement
information whereas the aggregator consumes and processes
these events. Processing often means to aggregate, store
and forward events, but also means to derive new events. A
derived event could be the combination of multiple (hetero-
geneous) sensor readings, or the reaction to combinations
of events (e.g., emergency call because of a detected heart
attack). In order to provide a history of events, the aggre-
gator should provide sufficient storage capabilities as well as
the capability to communicate with other instances (e.g., a
health care provider).

The following subsections provide a structured list of tar-
geted requirements that a generic BSN architecture should
meet in order to support the variety of applications men-
tioned in the introduction.

3.1.1 Networking Requirements

Protocol Independency. Since network protocols are
important for the lifetime, security, and performance of BSNs
and might be adapted to a special application, a generic BSN
architecture should not rely on a specific protocol. Instead,
it is important to support different network protocols and to
allow changing them or to support more than one protocol in
parallel. This furthermore increases the number and types
of sensors the system can handle and hence the applications
it can support.

504

Ad-hoc Connections. A second networking require-
ment is the ability of seamless switching between sensor
configurations. This increases not only the usability of the
system but also its opportunities. By enabling a BSN ap-
plication to utilize sensors as they become available without
additional interactions, the application always provides the
best possible service. An example is given in Section 4.2: As
soon as the user wears the gym gloves, the system utilizes
the sensor included in the glove and provides counting the
exercise repetitions. Further examples are stationary sensors
like a scale or a sensor for medication supply. Those sensors
are not always connected to the BSN, but the connection
should be established as soon as they become available.

3.1.2 Aggregator Requirements

Central Reasoning. Having an aggregator device which
collects all sensor readings simplifies the development and
maintenance of a BSN application: sensor fusion and rea-
soning is done on one device. For changing the behavior of
the system or adapting it to a new sensor environment, only
parts of the aggregator have to be changed instead of the
individual sensors. In addition to this, the body-worn sen-
sors can focus on the sensing process, which simplifies their
development and in many cases saves energy.

Modular Architecture. The aggregator device has to
be adaptive and extendable in order to support different or
changing applications. Therefore, it is important to have
a modular architecture running on the aggregator device
which allows adding or removing functionality in an easy
manner and with minimal impact on the whole BSN system.

Self-configuration. As already mention in the network-
ing requirements, sensor units might appear and disappear
during runtime. The aggregator should be capable of adding
or removing sensor-related software functionality as sensors
appear or disappear. This property of self-configuration en-
sures best available service based on the current sensor con-
figuration.

Sufficient Local Resources. A requirement on the ag-
gregator’s hardware is to provide enough processing power
for performing tasks such as sensor fusion and reasoning.
As shown in Section 4 the aggregator performs real-time
classification of streaming sensor data, coming from multi-
ple sources, and compare what was recognized against other
events (such as the current activity to the person’s current
heart rate). In order to log sensor readings, the aggregator
should also provide enough storage capabilities (e.g., storing
long-term ECG readings).

Connectivity. Health care applications often require
connectivity to remote instances. This could be commu-
nication among a patient’s BSN and health care providers
in order to send health reports or to raise an alarm in case
of an emergency. Especially for the latter case, a feedback
channel to the patient is desirable in order to be able to react
immediately to a serious event (e.g., calming down a patient
or verifying that an emergency is taking place). Also, the
integration of social platforms and online workout databases
for preventive health care require connectivity to remote in-
stances and can lead to an increased user motivation.

3.1.3 Further Requirements

Inter-sensor Compatibility. A sensor might be re-
placed by another sensor that can be used for the same
application but provides the information in another man-

ner. For example, a heart rate sensor might be replaced by
an ECG sensor in order to get more detailed information.
Since an ECG curve also provides the heart rate and rules
for heart rate monitoring might not work with ECG curves,
a BSN architecture should provide simple mechanisms to
convert sensor information to a system-wide known format
even if the information has a higher granularity than the
desired one.

Security, Privacy. Since body sensor networks are sens-
ing very personal information, security and privacy are im-
portant to keep in mind, even more so for health care appli-
cations. In addition to this, system reliability is critical for
the acceptance of health care applications.

3.2 Generic Platform for BSNs
After discussing the requirements on a generic BSN ar-

chitecture, we highlight the reasons why we decided for an
event-based middleware running on a smartphone as the ag-
gregator device. Afterwards we describe our architecture in
detail and show how it fulfills the requirements defined in
Section 3.1. In the following section we will show how to
use the generic platform for a specific application.

3.2.1 Event-based Middleware

In our opinion, one of the key properties a BSN middle-
ware has to provide is the support of an arbitrary wide range
of different sensors and actuators. They are the key ele-
ments for monitoring. In addition to this, a BSN middleware
should be able to seamlessly switch between sensor configu-
rations. Therefore, we decided for an event-based BSN mid-
dleware, since event-based systems provide a loosely coupled
communication and therefore a very flexible multi-sensor
and multi-actor communication. It allows ad-hoc sensor
configurations as well as seamless switching between those
configurations. Another aspect of event-based systems is
the creation of event hierarchies, event transformation, and
event compositions. These techniques enable our system to
adapt events to a given system configuration and to han-
dle future sensors without changing major parts of the sys-
tem. Converting sensor information from a higher granu-
larity to a lower one is achieved by an event hierarchy. We
propose a generic event-based middleware that supports a
wide range of sensors and actuators and a seamless switch-
ing between BSN configurations. Sensor modules translate
sensor-specific readings to sensor events which are then in-
jected into the system.

3.2.2 Smartphone as an Aggretator

In today’s society mobile phones are very popular and ac-
cepted end-user devices. Especially smartphones with large
touchscreens, high processing power, and rich storage and
networking capabilities gain in popularity. Since they are
powerful and already carried by many users, we chose this
technology as our BSN aggregator. A typical smartphone
has at least 550 MHz processing power, extendable stor-
age capabilities and it supports different network protocols
for Internet communication and at least Bluetooth for BSN
communication. In addition to this, phone calls are a help-
ful functionality for health care and elderly applications: For
example, instead of immediately sending an emergency car,
a simple phone call could show that the person is fine and a
sensor malfunction raised the alarm.

505

GUI

Event

Handler
SQLite

Event

Reasoner

Activity

Services

ThreadS
M
A
R
T
P
H
O
N
E

SENSORS S1 S2 S3

M1 M2 M3

S4

M4

S0

M0

Figure 1: Layered, event-driven middleware archi-
tecture for body sensor networks providing high ex-
tendibility and adaptability as well as a seamless
handling of sensor configuration changes.

3.3 Layered, Event-driven Architecture
Figure 1 depicts the architecture of our middleware imple-

mented as an Android [1] application. On top is the graph-
ical user interface (GUI) which is decoupled from the lower
levels of the system. It is used for configuration, visualiza-
tion and user interaction, but the system does not rely on it
and runs even if the user is running another application.

The intermediate layer consists of the middleware’s main
components: the EventHandler, EventReasoner, and SQLite
database. They are implemented as services which run in-
dependently in different processes which increases both the
performance as well as the reliability. In case a service
crashes, another service detects this and initializes a re-start.
The EventHandler is the central communication component
that acts like a broker, it consumes events arriving from
the sensors, GUI, and EventReasoner as well as from the
application’s event producers (cp. Section 4.2). Upon re-
ceiving an event, it modifies the event, enriches it or sim-
ply forwards it to an interested event consumer such as the
EventReasoner, SQLite database, an application using our
middleware or an actuator device connected to the phone.
Many events are simply forwarded, but for some applica-
tions it is necessary to enrich the event for instance by
adding user information (e.g., patient ID, combination of
heart rate and current activity). By having event hierar-
chies, event modifications allow transforming events of one
depth in the hierarchy to another depth. For example, an
event transformation from an ECG event of high granular-
ity to a heart rate event of lower granularity is very useful
if an application is working on heart rate events but not
on ECG curves. The EventReasoner interprets incoming
events, identifies general situations on which the system has
to react and creates a corresponding derived event. For in-
stance, the heart rate sensor used in our case study (cp.
Section 4.2) provides information about the current battery
level. Upon receiving an event from this sensor indication
low battery power, an alarm event is created and sent to the
EventReasoner. The SQLite database is used for logging
and providing application-specific as well as general sensor
information.

At the bottom layer are the sensor modules (Mx). They
are running in individual threads and translate the (raw)

sensor data to events which are then forwarded to the Even-
tHandler. A sensor event basically consists of an event ID,
producer ID, producer description, timestamp, and sensor-
related information. By having sensor modules as an inter-
face between sensors and the event-based middleware, the
system can easily be adapted to new sensors and/or to an-
other communication protocol. For instance, for replacing
a heart rate sensor only the corresponding sensor module
needs to be replaced. Other parts of the middleware, and
even more important, the application itself does not have
to be changed. Furthermore, by having the EventHandler
translating ECG events to heart rate events, even switch-
ing from an heart rate sensor to an ECG sensor means only
changing the sensor module without changing parts of the
application. This feature becomes desirable if new moni-
toring parameters are added without replacing the old ones
(e.g., common heart rate monitoring).

Compared to the requirements on a generic BSN archi-
tecture listed in Section 3.1, the following properties are ful-
filled by the choice of a smartphone as aggregator and by
the previously discussed middleware design:

• Network protocol independency is achieved by hav-
ing modules translating sensor data to events.

• The event-driven architecture supports ad-hoc con-
nections inherently.

• Central reasoning is done on the smartphone.

• The modular architecture provides high extendibil-
ity and adaptability.

• Self-configuration is achieved by having an event-
driven system: incoming events trigger actions.

• Current smartphones provide high connectivity and
sufficient local resources.

• Sensor modules provide inter-sensor compatibility.

Having the middleware’s and application’s services sepa-
rated in different processes increases the overall reliability.
Processes can check for the vividness of other processes. The
system’s modular architecture simplifies the deployment of
security and privacy features. For securing the sensor
network, only the sensor modules have to be changed to the
sensor-specific secured communication protocol. A security
and privacy module, running on the service layer, can be
used for modifying and securing the data before they are
sent to a remote instance or for securing the local access.

3.4 Summary
This section showed the requirements on, and our pro-

posal for, a generic BSN architecture. A distinction is made
between a fixed aggregator device for handling the commu-
nication and the application-related reasoning on one hand.
And an application specific set of sensor and actuator de-
vices that might change over time on the other hand. We
presented requirements on the aggregator and its communi-
cation capabilities. Based on these demands we decided for
an event-based middleware running on a smartphone. The
resulting architecture was presented in detail and compared
to requirements we defined before.

506

(a) (b)

Figure 2: Body sensor network consisting of a smart-
phone, a heart rate monitor, and a setup for daily
activity recognition (a) and a setup for gym exercise
detection including repetition counting (b).

The next section studies the benefits of this architecture
in detail and under real-world conditions, by building a pre-
ventive health care application, myHealthAssistant, on top
of this middleware.

4. CASE STUDY: THE FITNESS DIARY
Physical inactivity is one of the risk factors of many costly

and disabling health conditions [13]. A goal of preventive
health care is to motivate people in increasing their level of
physical activity. This case study focuses on motivating a
person by continiously capturing daily activities, energy ex-
penditure and the heart rate. Our application, myHealthAs-
sistant, is a fitness diary that monitors a person throughout
the day and gives, in a standard setup, real-time information
about the current activity, energy expenditure, and heart
rate. In addition to this, a gym exercise setup gives de-
tailed information about different gym exercises including
their repetitions. The captured information could then be
shared with friends or sent to a workout database. Activity
and heart rate information can be used for calculating the
calorie expenditure as proposed in [14]. The calorie expendi-
ture calculation shown in Figure 4 is based on a study from
[4] using age, gender, weight and heart rate.

In detail, this case study tests the feasibility of our mid-
dleware design and focuses on automated activity recogni-
tion that works on different granularities. For capturing a
person’s daily activity, a coarse-grained activity recognition
that detects only a few fitness-relevant activities is sufficient
and does only require a small sensor network. For detecting
all aspects of a gym workout, more precise activity recogni-
tion is necessary and additional information like the repeti-
tions of weight lifting exercises is desired. This fine-grained
activity detection needs a larger network of body sensors and
increases the complexity of the system. Furthermore, it re-
quires the system to handle changing sensor configurations.
The fitness diary recognizes both the coarse-grained daily
activities as well as the fine-grained gym exercises includ-
ing additional repetition information. It stresses different
aspects of our architecture such as adaptability, seamless
switching between sensor configurations, and multi-modal

data processing. Figure 2 shows the sensor configurations of
our case study.

Our case study’s description is structured as follows: First,
a description about system setup including the Android plat-
form and utilized sensor devices is given. Then we show how
the application, myHealthAssistant, is implemented by us-
ing our middleware. Finally, a brief discussion about the
application’s activity recognition quality is given.

4.1 System Setup

4.1.1 Android Platform

Android [1] is an open source mobile operating system for
smartphones and tablet PCs that uses a modified version of
the Linux kernel. Software can be written in Java and exe-
cuted in a specialized virtual machine that provides a wide
range of communication protocols. The number and func-
tionality of Android devices grow rapidly and fit very well to
the area of BSNs. A smartphone is unobtrusive and, hence,
it can be used for daily patient monitoring whereas a tablet
PC at the doctor’s office can be used for better visualization
of the patient’s health parameters. Both devices are running
the same system and allowing a seamless switching.

The Motorola Milestone phone serves as the Android 2.1
device. It provides 550 MHz processor speed and 8 GB in-
ternal storage. The Bluetooth protcol is used for commu-
nication with the body sensors. It also supports telephony,
text messaging, and different protocols for Internet commu-
nication (e.g., EDGE, UMTS, WLAN).

4.1.2 Sensors

The case study consists of up to four sensors connected
to our system: one heart rate sensor and three accelerom-
eters. The Zephyr HxM Bluetooth sensor [15] serves as
our heart rate sensor which every second sends information
about its battery level and the user’s heart rate. For the
accelerometers we use the Porcupine [12] device which was
developed for logging human physical activities. It is small,
cheap and equipped among others with the ADXL330 three-
dimensional MEMS acceleration sensor and a low-power mi-
crocontroller (18F4550). Additionally, we attached a serial
port Bluetooth module to it. The sensor’s acceleration is
processed with a sampling rate of 100Hz. Bluetooth packets
containing the following information are sent to the smart-
phone every second. Each packet consists of the mean values
and the variances for each axis over one second of time. Each
value is represented by one byte which sums up to six bytes
per packet. In addition to this, the wrist sensor adds six
bytes peak information to its packet.

The Bluetooth protocol is used for the communication
among the sensors and the smartphone since it is well in-
tegrated in current smartphones and supported by most
Android devices. In addition, there are already various
Bluetooth-enabled (health care) sensors as consumer elec-
tronics products. This allows establishing a body sensor
network using our platform with the extension of a large
variety of commercial physiological sensors.

4.2 Fitness Diary Implementation
The fitness diary implementation uses all parts of our ar-

chitecture described in Section 3.3. A detailed description
and evaluation of the application’s activity detection and
exercise counting algorithms is given in [10]. Figure 3 de-

507

GUI

Event

Handler

SQLite

Pulse Monitor

Activity

Service

Thread

S
M
A
R
T
P
H
O
N
E

SENSORS

GUI

Middleware Application

Event

Reasoner

Acc2
Acc3

Peak

Macc MaccPeak

HxM

MHxM

Acc1

Macc

Gym Exercises

Rep. Count

Daily Activities

Figure 3: Implementation of myHealthAssistant:
Application-specific modules send and receive
events via the EventHandler. Sensor modules trans-
late raw sensor data to events.

picts the implementation of myHealthAssistant with regard
to the middleware. At the bottom, there are up to three ac-
celerometers (Acc1, Acc2, Acc3Peak) connected to the ap-
plication, where Acc1 and Acc2 are identical sensors pro-
viding statistics on acceleration data, and Acc3Peak addi-
tionally provides peak detection information. The HxM sen-
sor represents the Zephyr HxM heart rate sensor. On the
figure’s right side, the application’s user interface and the
application-specific modules: PulseMonitor, DailyActivities
and GymExercises are depicted. The modules’ descriptions
will follow the system’s overall information flow.

Starting from the bottom layer, there are up to four Blue-
tooth sensors connected to the Android phone, namely the
HxM heart rate sensor and up to three accelerometers (Acc1
for daily activities and Acc1, Acc2, Acc3Peak for gym ex-
ercises). The raw sensor data is sent to the corresponding
module Mx which translates the data to events. There are
three event types created by the sensor modules: HeartRa-
teEvents which consist of the current heart rate, an increas-
ing heart rate ID, and the sensor’s current battery level,
AccelerationEvents which consist of the mean acceleration
value and variance per axis, and AccelerationPeakEvents
which additionally consist of peak information per axis. The
events are sent to the EventHandler. Upon receiving such
an event, the EventHandler forwards it to modules that are
interested in this event type. The following describes the in-
dividual modules including their tasks and events they con-
sume and produce.

Daily Activities. The DailyActivities module consumes
AccelerationEvents, sent every second from the three- dimen-
sional accelerometer Acc1 attached above the right knee (cp.
Figure 2 (a)), and performs activity recognition for detect-
ing: standing, sitting, walking, running, or cycling. After
calculating the current activity, an ActivityEvent is created
and forwarded to the EventHandler.

The activity detection is based on samples of mean and
variance values for each axis on which we modeled the six-
dimensional Gaussian distribution for each class. The clos-
est distance to one of these classes of an incoming sample
decides on the current activity. This is done in real-time on
the phone based on secondly incoming AccelerationEvents.

Figure 4: User interface of myHealthAssistant show-
ing current heart rate, calorie expenditure, repeti-
tion count, exercise, and workout details.

Gym Exercises. For a more detailed detection of the
weight lifting exercises, including counting, two more ac-
celerometers are needed: one integrated in a chest-strap
(Acc2), and the other in a weight lifting glove (Acc3Peak)
(cp. Figure 2 (b)). All a person has to do is to switch
on the sensors, wear them and the system connects to the
newly available sensors and begins the fine-grained gym ex-
ercise detection. As before, every sensor transmits the mean
and variance for each acceleration axis per second, expand-
ing the total input data space for the Gaussian models from
six to eighteen dimensions for exercise recognition.

In addition to the AccelerationEvents from sensor Acc1,
the GymExercise module consumes AccelerationEvents from
the sensors Acc2 and Acc3Peak. Based on those events it
calculates the current gym exercise out of an exercise space
of 5 popular cardio workouts and 11 weight lifting exercises
for training the chest, back, shoulders, arms, abs and legs.
If a cardio activity is detected, an ActivityEvent is created
and sent to the EventHandler. In the case of a weight lifting
exercise, the RepetitionCount submodule is triggered and an
GymActivityEvent including the exercise’s repetition count
is created and forwarded to the EventHandler. Since Gy-
mAcitivityEvents are inferred from the event type Activi-
tyEvent, modules working with ActivityEvents can also work
with GymAcitivityEvents.

Pulse Monitor. The PulseMonitor module consumes
ActivityEvents as well as HeartRateEvents and performs a
simple pulse monitoring based on the last series of detected
activities and the current heart rate. If the current heart rate
is outside the activity-specific pulse range, a PulseAlarm is
created and sent to the EventHandler. Besides a ”dangerous
heart rate” notification on the phone, the system also sends
an SMS message to a pre-configured phone number.

GUI. The user interface consumes both types of Activ-
ityEvents, HeartRateEvents, and PulseAlarmEvents. Fig-
ure 4 depicts the interface for a barbell curl weight lifting
exercise. The current pulse and calorie expenditure are dis-
played on the top, followed by indicators for sensor connec-
tivity on the left side and the current repetition count on the
right side. A picture and the name of the current activity

508

0 mW

10 mW

20 mW

30 mW

40 mW

no sensor

connected

1 acc 3 acc heart rate 1 acc +

heart rate

3 acc +

heart rate

myHealthAssistent

Android system

Figure 5: Energy consumption of myHealthAssis-
tant and the Android system with different sensor
configurations.

are displayed below this, followed by workout information
such as finished sets, performed repetitions, and remaining
exercises.

4.3 Summary
The implementation of a fitness diary application built

upon the middleware shows that the architecture provides a
fast and straightforward application development. Applica-
tions are divided in individual modules responsible for spe-
cific tasks (e.g., pulse monitoring, activity detection). Mod-
ules consume and produce events they receive from and send
to the EventHandler. For adding new functionality, it is suf-
ficient to add a new module. Event hierarchies allow inter-
operability among (sensor) modules.

The application’s main contribution is an activity recog-
nition that adapts to the environment utilizing the seam-
less switching between sensor configurations provided by the
middleware. Evaluations on the daily activity recognition
showed a robust detection even if activities are performed
in other speed ranges than they were trained for [10]. Tests
on subject-independency also showed a very reliable accu-
racy of more than 99% for detecting daily activities. This is
important for the deployment of a preventive health care ap-
plication since a user-specific classifier training would take
too much effort. For gym exercises, the overall precision
and recall are with on average 92% respectively 95% a little
worse, but still good enough. Tests on the counting algo-
rithm resulted in an overall miscount rate of 2.42%.

We bundled the myHealthAssistant application with the
middleware in order to make the deployment as simple as
possible. User interaction is limited to installing the Android
App and switching on the sensors. For separating the mid-
dleware from the application, the application has to connect
to the EventHandler ’s Android Content Provider.

5. SYSTEM EVALUATION
The entire system, with phone and sensors, lasts under

realistic conditions (the phone being used frequently, all sen-
sors turned on) for at least 12 hours of activity and heart
rate monitoring without a recharge. This is enough time for
monitoring a person during the day and charging the sys-
tem at night. After 12 hours the phone still remains with
20% battery capacity. In future, this can be expected to im-
prove, as the system is not limited to Bluetooth and more
power-efficient protocols exist, to which our system can eas-
ily be adapted. Figure 5 depicts a comparison of the energy
consumption between myHealthAssistant and the Android
system for different sensor network configurations using the

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

no sensor

connected

1 acc 3 acc heart rate 1 acc +

heart rate

3 acc +

heart rate

CPU Usage

Figure 6: myHealthAssistant CPU utilization of dif-
ferent sensor configurations.

PowerTutor [16, 8]. The Android system’s energy consump-
tion fluctuates during runtime more than myHealthAssis-
tant which might be caused by Android’s background tasks.
A direct impact of our application to the Android system’s
energy consumption is not to observe.

A comparison of the CPU utilization between six different
network configurations is shown in Figure 6. Without any
sensor connected to the application, the application needs al-
most no CPU cycles. A system consisting of one accelerom-
eter and the activity recognition for daily activities increases
the CPU utilization to 4.3%. By connecting two more ac-
celerometers and performing the detection of 16 gym ex-
ercises, the system uses almost 4.6% CPU time. The use
of a heart rate sensor takes more CPU power (5.1%) be-
cause the PulseMonitor is triggered by incoming heart rate
events. Thus, connecting the heart rate sensor means that
the PulseMonitor starts monitoring the heart rate which
also takes CPU cycles. Using both a heart rate sensor and
accelerometer(s) for activity recognition increases the CPU
utilization again to 7.8% for recognizing daily activities and
to 8.9% for recognizing gym exercises. The application re-
quires approximately 22MB memory and 12 hours of heart
rate and daily activity monitoring requires 3.8MB in the
SQLite database.

Figure 7 shows a day-long test of daily activity and heart
rate monitoring. It also shows some unusual positive and
negative peaks. The negative peaks were resulting from a
too dry contact between the sensor strap and the skin which
can be resolved by moistening the strap. For the high peaks,
we have not found a proper solution so far. Usually the heart
rate returned to the actual value after some seconds. Since
the heart rate processing is done on the sensor and only the
final value is sent to our system, sensor failures are hard
to detect. In our application, the PulseMonitor compares
the heart rate against the current activity and an overall
range of heart rate values. Since the peak values in Figure 7
were outside these ranges, the PulseMonitor triggered a
”‘dangerous heart rate”’ alarm (cp. Section 4.2) and, hence,
informed us about the sensor malfunction.

For gym exercise recognition, sensors have to be attached
to three positions on a subject’s body (cp. Figure 2 (b)).
The heart rate sensor together with one accelerometer is at-
tached to the chest. Since the heart rate sensor’s strap is
very comfortable and both sensors are small, these sensors
are unobtrusive and attaching them is easy to do. The wrist
sensor is combined with a weight lifting glove which makes
it also easy to attach. Only attaching the leg’s accelerome-
ter happened to be slightly difficult for subjects because it
is not clear were the sensor has to be. This could be solved

509

a
c
ti
v
it
ie
s

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
0

50

100

150

sitting standing walking running cycling

pulse

Figure 7: Visualization of the data captured by the BSN system on the phone: detected activities and heart
rate values during one of the day-long tests.

by labeling the strap with left/right indicators and show-
ing a sketch illustrating an attached sensor. Once we had
shown the subjects how to attach the leg’s sensors, attach-
ing it was no more a problem for them. Some subjects had
the problem that the strap was slipping during the cardio
exercises, especially during a run. For future tests we will
try a dimpled rubber strap in order to avoid slipping. Over-
all, attaching the sensors was fairly easy and readjustments
were not necessary.

Despite the peaks from the heart rate sensor, our system
worked quite reliably. Only during the long-term tests, the
leg’s accelerometer disconnected once or twice. Except for
the long-term test, there were no Bluetooth disconnections
during our tests. The application itself did not crash during
our tests.

From an end-user’s point of view, the system seemed to be
easy and intuitive to use. Except for the leg’s accelerometer,
the sensors are unobtrusive and wearing the system in a gym
did not attract attention. Changing the textual user feed-
back on the phone to illustrations in form of pictures of the
detected activity, resulted in an improved user experience,
especially for elderly people.

6. CONCLUSIONS AND FUTURE WORK
Many health care applications require continuous mon-

itoring of patient’s physiological and physical parameters.
A body sensor network consists of body-worn sensors that
allow monitoring a patient’s parameters in real-time and
therefore fits to those requirements. In this paper, we pre-
sented a fitness diary built upon a generic middleware that
captures a person’s heart rate, daily activities, as well as
specific gym exercises. This preventive health care applica-
tion intends to motivate patients to increase their level of
physical activity and to decrease the risk of disabling health
conditions.

The contributions of this work is an event-based middle-
ware for body sensor networks, providing the means neces-
sary for supporting a variety of typical BSN applications. Its
modular and event-driven architecture supports high flexi-
bility and extensibility as well as seamless switching between
sensor configurations, which we argue are important proper-
ties for a range of health care applications. In order to evalu-
ate our middleware, we developed a fitness diary application
built upon it. The application works on different sets of sen-
sors and shows the middleware’s ability to handle different
sensor configurations, provide efficient data processing, and
day-long monitoring.

Since there are already a lot of commercial health care
sensors (e.g., ECG, blood pressure, SpO2) available, our
next focus will rely on extending the sensor set to physi-
ological parameter-related applications. In addition to this,

enabling communication with the environment and health
care providers is another target of our future work. In or-
der to cope with these challenges, we will extend our archi-
tecture with additional communication paradigms and inte-
grate mechanism that guarantees security and privacy up to
an appropriate degree.

The fitness diary case study is currently in evaluation for
further extended use by expert users. Additional integration
plans include the uploading of the completed workout to
a social platform, in order to illustrate the communication
with remote instances and to increase the user’s motivation.

The source code of the Android application, the embedded
sensor routines, as well as the reported data sets can be
obtained by contacting the first author.

7. ACKNOWLEDGMENTS
This work was gratefully supported by the German Re-

search Foundation (DFG) within the research training group
1362 Cooperative, Adaptive, and Responsive Monitoring in
Mixed Mode Environments.

8. REFERENCES

[1] Google. Android OS. http://www.android.com/,
2011. [Online; accessed 31-January-2011].

[2] D. Guerra, U. Gawlick, and P. Bizarro. An integrated
data management approach to manage health care
data. DEBS, pages 40:1–40:2, 2009.

[3] V. Jones, A. Van Halteren, N. Dokovsky,
G. Koprinkov, J. Peuscher, R. Bults, D. Konstantas,
W. Ing, and R. Herzog. MobiHealth: Mobile Services
for Health Professionals, in M-Health: Emerging
Mobile Health Systems. Springer-Verlag New York Inc,
2006.

[4] L. R. Keytel, J. H. Goedecke, T. D. Noakes,
H. Hiiloskorpi, R. Laukkanen, L. Van Der Merwe, and
E. V. Lambert. Prediction of energy expenditure from
heart rate monitoring during submaximal exercise.
Journal of Sports Sciences, 23(3):289–297, 2005.

[5] P. Khan, A. Hussain, and K. S. Kwak. Medical
Applications of Wireless Body Area Networks.
International Journal of Digital Content Technology
and its Applications, 3(3):185–193, 2009.

[6] P. Neves, M. Stachyra, and J. Rodrigues. Application
of wireless sensor networks to healthcare promotion.
Journal of Communications Software and Systems
(JCOMSS), 4(3):181–190, 2006.

[7] Partnership of the Heart. Telemedical interventional
monitoring in heart failure.
http://www.partnership-for-the-heart.de/en/,
2011. [Online; accessed 01-April-2011].

510

[8] PowerTutor. A Power Monitor for Android-Based
Mobile Platforms. http:
//ziyang.eecs.umich.edu/projects/powertutor/,
2011. [Online; accessed 23-March-2011].

[9] RAE Systems. Lifeshirt - personal life sign monitor.
http://www.raesystems.com/products/lifeshirt,
2011. [Online; accessed 01-April-2011].

[10] C. Seeger, K. Van Laerhoven, and A. Buchmann.
myHealthAssistant: A Phone-based Body Sensor
Network that Captures the Wearer’s Exercises
throughout the Day. In Body Area Networks
(BodyNets), 2011.

[11] J. Singh and J. Bacon. Event-based data
dissemination control in healthcare. Electronic
Healthcare, pages 167–174, 2009.

[12] K. Van Laerhoven and H.-W. Gellersen. Spine versus
porcupine: A study in distributed wearable activity
recognition. In International Symposium on Wearable
Computers (ISWC), pages 142–149, 2004.

[13] World Health Organization. Integrating prevention
into health care. http://www.who.int/mediacentre/
factsheets/fs172/en/index.html, 2011. [Online;
accessed 01-April-2011].

[14] J. Yang and Z. Liu. Adacem: automatic daily activity
and calorie expenditure monitor on mobile phones. In
Proceedings of the Conference on Embedded Networked
Sensor Systems, SenSys ’10, pages 409–410, 2010.

[15] Zepyhr Technology Corporation. Consumer HxM.
http://www.zephyr-technology.com/consumer-hxm,
2011. [Online; accessed 31-January-2011].

[16] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang. Accurate online power
estimation and automatic battery behavior based
power model generation for smartphones. In
Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software
codesign and system synthesis, CODES/ISSS ’10,
pages 105–114, New York, NY, USA, 2010. ACM.

511

